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Technological forecasting is a tool for organizations to develop their technology strategies. The quality of
forecasting is extremely important for the accuracy of the results and in turn company future. Therefore a
proper selection methodol ogy of forecasting technique that consider s the characteristics of technology 
and resource s needed such as cost, time is essential. On the other hand, although many forecasti ng tech- 
niques are available, there is a high uncertain ty in choosing the most appropriate technique among a set 
of available techniques. In this paper interval valued intuitionistic fuzzy techni que for order preference 
by similarity to ideal solution (TOPSIS) method is proposed for the solution of technological forecasting 
technique selection problem. The proposed method includes seven selection criteria and twelve forecast- 
ing technique alternatives. The methodology is applied for 3D TV technology. The results revealed that 
Fisher Pry method is found as the most appropriate method for forecasting since it has the highest close- 
ness coefficient.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction 

Technology forecasti ng is the systematic process of describing 
the emergence, performance, features or impacts of a technology 
at a time in the future (Technolo gy Futures Analysis Methods 
Working Group., 2004 ). It is a tool used for responding the emerg- 
ing needs of private and public sector organizations in the compet- 
itive global environment. The purpose of any type of forecasting 
and foremost role of the forecaster is to support the decision-ma k-
ers in making business plans. A primary recommend ation in strat- 
egy literature is; managers should abandon a maturing technology 
and embrace a new one to stay competitive (Christensen , 1997 ). A
central, practical problem that managers face is; when to shift 
investments from the current to the future technolo gy. In other 
words, deciding between ‘the optimization of existing technolo- 
gies’ or ‘the developmen t of a new core technology’ is one of the 
most challenging problem of research and development staff of
an organization (Slocum & Lundberg, 2001 ). Seeking answers to
these problems make technolo gical forecasting is an important 
tool for organizations. Although many decision techniques are 
available, there is a high uncertainty in choosing the most appro- 
priate techniqu e. Beside, all decision making techniques cannot 
be applied to all forecasting cases. Some of the technolo gical fore- 
casting techniques cannot incorporate the organizational and 
political scenarios that will influence future technologies. In addi- 
tion while some techniques consider only expert opinions while 
some others just consider historical data. The main objective of this 
study is offering a multi attribute decision making tool to help the 
decision makers to select the most appropriate technological fore- 
casting technique among a set of available techniques.

Selection of appropriate technologic al forecasting technique 
have two main problems. One is; a multi criteria decision making 
(MCDM) problem where many criteria should be considered in
decision- making. And the other one is; a problem containing sub- 
jectivity, uncertainty and ambiguity in assessment process 
(Dag ˘deviren, Yavuz, & Kılınc, 2009 ). Therefore this study utilizes 
interval-valued intuitionistic fuzzy numbers to obtain the perfor- 
mance ratings of the feasible alternatives and proposes a TOPSIS 
method with interval-valued intuitionistic fuzzy numbers to solve 
technolo gical forecasting technique selection problem.
2. Literature review 

2.1. Technolog y forecasting techniques 

The following table presents a variety of techniqu es that are 
commonl y used in technology forecasting (Table 1)

Technolog y trend analysis: If there is a steady stream of techno- 
logical change and improvement, trend is determined with 
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Table 1
Technology forecasting techniques and relevant citation s.

Forecasting techniques Relevant citations 

Trend analysis Coates et al. (2001), Eto (2003), Firat A. K. and Madnick S. (2008), Levary and Han (1995), Meredith and Mantel (1995),
Miller and Swinehart (2010) and Mishra et al. (2002)

Growth curve analysis Bengisu and Nekhili (2006), Chen et al. (2011), Coates et al. (2001), Daim et al. (2006), Kucharavy and De Guio (2011b).
Levary and Han (1995), Martino (2003), Meredith and Mantel (1995) and Vanston (2003)

Fisher Pry analysis Daim et al. (2006), Kucharavy and De Guio (2011b), Tseng et al. (2009), Vanston (2003)
Analogy Firat et al. (2008), Vanston (2003) and Watts and Porter (1997)
Morphological matrices Martino (2003), Meredith and Mantel (1995), Vanston (2003) and Watts and Porter (1997)
Patent analysis Chen et al. (2011), Dubaric et al. (2011), Vanston (2003), Watts and Porter (1997) and Daim et al. (2006)
Scanning, monitoring, tracking Firat et al. (2008), Martino (2003), Meredith and Mantel (1995), Vanston (2003) and Watts and Porter (1997)
Scenarios Coates et al. (2001), Daim et al. (2006), Firat et al. (2008), Levary and Han (1995), Martino (2003), Miller and Swinehart (2010),

Meredith and Mantel (1995), Tseng et al. (2009), Vanston (2003) and Watts and Porter (1997)
Monte Carlo models Vanston (2003) and Watts and Porter (1997)
Delphi survey Coates et al. (2001), Eto (2003), Firat et al. (2008), Levary and Han (1995), Martino (2003), Meredith and Mantel (1995),

Miller and Swinehart (2010), Mishra et al. (2010), Tseng et al. (2009), Vanston (2003) and Watts and Porter (1997)
Relevance trees Levary and Han (1995), Meredith and Mantel (1995) and Miller and Swinehart (2010)
Cross impact analysis Firat et al. (2008), Levary and Han (1995), Meredith and Mantel (1995) and Miller and Swinehart (2010)
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historical data and future is inferred from this trend by extendin g
this pattern (Vanston, 2003 ).

Growth curves: The growth curve forecasting method is based 
on the paramete r estimation of a technology’s life cycle curve (Le-
vary & Han, 1995 ). It is also helpful in predicting when the technol- 
ogy will reach a particular life cycle stage.

Fisher-Pry analysis: This techniqu e uses logistic curve formula- 
tions to project the pattern and rate of adoption of a superior 
new technology (Vanston, 2003 ).

Analogy analysis: This technique uses one or more analogous sit- 
uations project future trends or events (Vanston, 2003 ) by utilizing 
similarities between events.

Morphologic al matrices: It allows envisioning new products and 
services by defining essential functions involved in current prod- 
ucts and services and then postulating alternate ways for accom- 
plishing each of these functions and new ways of combining 
them (Vanston, 2003 ).

Patent analysis: In this technique numbers , types and patterns of
patents are analyzed to derive information about a particular 
industry or technology.

Scanning, monitoring and tracking: Scanning seeks to identify 
any trend or event that might impact the organizati on. Monitoring 
is designed to follow general trends in specified areas. Tracking is
designed to follow developmen ts in a limited area carefully.

Scenarios: Scenario analysis provides a structured method for 
integrating a number of individual forecasts into a series of com- 
prehensive, feasible narrative s about how the future might 
develop.

Monte Carlo models: In this technique, all steps involved in the 
developmen t of a new technolo gy are identified, and their interre- 
lationships specified in a mathemati cal model. Probability values 
are assigned to each event and then computer model is run numer- 
ous times to determine the overall probabilities.

Delphi survey: It is a qualitative approach that a panel of experts 
used as the source of information to forecast the likelihoo d and 
timing of future event (Levary & Han, 1995 ).

Relevance trees: It is a normativ e approach to identify the hier- 
archical structure of the technologic al developmen t. The goals 
and objectives of a proposed technology are broken down into low- 
er level goals and objectives in a tree like format (Levary & Han,
1995).

Cross-impac t analysis: This method is an extension of Delphi 
method and designed to identify cases involving several interre- 
lated future events that may affect the likelihoo d of a given tech- 
nology being developed (Levary & Han, 1995 ). The purpose of
this method is to investigate the mutual influence of events.
Technolo gy forecasti ng techniques are widely studied by vari- 
ous authors. Growth curves are applied to industries by many 
researche rs (Chen, Chen, & Lee, 2011; Moona & Jeon, 2009; Ryu 
& Byeon, 2011 ). The most commonly used models on growth 
curves are S-curves and Pearl and Gompertz curves. Franses
(1994) develope d a model which identified the differences be- 
tween these two curves and defined the specific applicati on areas 
for them. Later, Bengisu & Nekhili (2006) used the same model for 
forecasti ng. Kucharavy and De Guio (2011a, 2011b) also made de- 
tailed research on S curves. Daim, Rueda, Martin, and Pisek (2006)
suggested using bibliometr ics and patent analysis in technolo gy
forecasti ng when sufficient historical data is not available . They 
provided data from patent and bibliometric analysis and used sce- 
nario planning, growth curves and analogies for technology fore- 
casting. Dubaric, Giaznnoc arro, Bengtsson, and Ackermann (2011)
also used patent data for forecasti ng wind power technology. Ben-
gisu and Nekhili (2006) used both bibliometric and patent data to
form S-curves and investigated the correlation between them.
Morris, DeYong, Wu, Salman, and Yemenu (2002) used a computer 
program that helps to perform bibliometr ic analysis of collection s
of scientific literature and patents for technology forecasti ng. Kim
et al. (2010) used dual AHP to select the best electrical device tech- 
nology in Korea.

Some articles are about choosing the best forecasti ng tech- 
niques. Eto (2003) studied logical fundamenta ls of extrapolation 
and Delphi techniques. Levary and Han (1995) identified main fac- 
tors affecting forecasting and studied 11 technolo gical forecasting 
techniqu es. Then, they prioritized them according to five criteria to
find the best method. Similarly, Cheng, Chen, and Chen (2008) used
fuzzy AHP for choosing the most appropriate techniqu e consider- 
ing 8 criteria and found that Delphi techniqu e was the best fore- 
casting method for new materials development. Mishra,
Deshmukh, and Vrat (2002) used a decision making technique to
find the best method by using 31 forecasting techniqu es. They 
found that normative techniques gave better result for defense sys- 
tems whereas Delphi technique was better for IT. Meade and Islam 
(1998) surveyed a wide range of possible models on technologic al
forecasti ng in literature. They suggested three group of curves 
namely symmetric, nonsymmet ric and flexible curves according 
to data sets they used and applied discriminant analysis for classi- 
fication purpose.

Some researchers used combinati ons of multiple techniques.
Yoo and Moon (2006) claimed that using multiple techniques gave 
better results and decrease d errors. Tseng, Cheng, and Peng (2009)
used a combination of scenario analysis, Delphi method and tech- 
nological substitution model to analyze the developmen t of a new 



Table 2
Criteria for forecastin g technique selection and relevant citations.

Criteria Relevant citations 

Data availability Cheng et al. (2008), Firat et al. (2008), Levary and Han (1995),
Mishra et al. (2002), Porter et al. (1991)

Data validity Cheng et al. (2008), Firat et al. (2008), Levary and Han (1995),
Mishra et al. (2002), Porter et al. (1991)

Technology development predictability Cheng et al. (2008)
Technology similarity (similarity of proposed and existing technology) Cheng et al. (2008), Firat et al. (2008), Levary and Han (1995),

Mishra et al. (2002), Porter et al. (1991)
Method adaptability Cheng et al. (2008)
Ease of operation Cheng et al. (2008)
Implementation cost (money available for development of technology) Cheng et al. (2008), Levary and Han (1995), Firat et al. (2008)
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technology. Shen, Chang, Lin, and Yu (2010) integrated fuzzy Del- 
phi method, analytic hierarchy process (AHP), and patent co-cita- 
tion approach (PCA) for technolo gy selection .

2.2. Criteria for forecasting method selection 

The forecasting techniques are selected according to criteria 
based on the characteristics of technology. In Table 2 there is a list 
of criteria that are widely used in literature.

Data availability refers to the range of data available for per- 
forming the technolo gy forecasti ng method.

Data validity reflects the degree of validity of the required data 
for the specific technology forecasting method (Cheng et al., 2008 ).

Technology development predictability describes how well the devel-
opment of the new technology is predicted by forecasting method.

Technology similarity refers to the degree of similarity between 
new and existing technolo gies (Cheng et al., 2008 ).

Method adaptability describes forecasting method’s dependency 
to experts’ opinions.

Ease of operation reflects the degree of easiness to use the tech- 
nology forecasting method.

Implementa tion cost describes the amount of money used for 
implementati on of the technolo gy forecasting method (Cheng
et al., 2008 ).

3. The basic concept of interval-valued intuition istic fuzzy sets 

In fuzzy sets theory membership of an element is a single value 
between zero and one. However, in reality the non-membersh ip
degree of an element in a fuzzy set is not certainly equal to 1 minus 
the degree of membership (Ye, 2010 ). The intuitionistic fuzzy set 
(IFS) can deal with fuzzy information considering both the mem- 
bership and non-membersh ip of information . After Atanasso v
(1986) extended Zadeh’s fuzzy sets to intuition istic fuzzy sets,
which is a generalizati on of the concept of fuzzy sets, IFS theory 
has been developed rapidly. The theory of intuitionisti c fuzzy sets 
is characterized by a membership degree, a non-membersh ip de- 
gree, and a hesitation degree. Later, Atanassov and Gargov (1989)
also introduced the concept of interval-val ued intuition istic fuzzy 
sets (IVIFS) as a further generaliz ation of the IFS theory. Zhao, Xu,
Liu, and Wang (2012) also used interval-valued intuitionisti c fuzzy 
sets for investigating graph theory-b ased clustering techniques.

3.1. Basic definitions

Let X be a non-empty and finite set with Card (X) = n. Let D[0,1]
be the set of all closed subintervals of the unit interval [0,1]. An
IVIFS have a form as (Atanassov & Gargov, 1989 ):

A ¼ fx;lAðxÞ; mAðxÞ : x 2 Xg ð1Þ

where lA:X ? D[0, 1], mA:X ? D[0, 1] with the conditio n sup 
suplAðxÞ þ supmAðxÞ 6 1 for any x e X (Atanass ov & Gargov, 1989 ).
The interval lA(x) states the degree of belongingne ss and mA(x)
denote the degree of non-belong ingness of the element x to A.

The operation s which will be used in this paper, as follows:
Let ~a1 ¼ h½a1; b1�; ½c1; d1�i; ~a2 ¼ h½a2; b2�; ½c2; d2�i and ~a ¼ h½a; b�;

½c; d�i be three IVIFNs; then 

(1) ~a1 � ~a2 ¼ h½a1a2; b1b2�; ½c1 þ c2 � c1c2; d1 þ d2 � d1d2�i;
(2) ~ak ¼ h½ak; bk�; ½1� ð1� cÞk;1� ð1� dÞk�i; k > 0;

(3) k~a ¼ h½1� ð1� aÞk; 1� ð1� bÞk�; ½ck; dk�i; k > 0;

which can ensure the operational results are also IVIFNs (Park,
Park, Kwun, & Tan, 2011 ). Score fuctions are defined by Xu
(2007) as follows:

sð~aÞ ¼ 1
2
ða� c þ b� dÞ ð2Þ

where sð~aÞ 2 ½�1;1�: sð~aÞ indicates the measure of a IVIFN. The lar- 
ger the value of sð~aÞ, the higher the IVIFN ~a. If sð~aÞ ¼ 1 then 
~a ¼ h½0;0�; ½1;1�i is the largest IVIFN; if sð~aÞ ¼ 1, then 
~a ¼ h½1;1�; ½0;0�i is the smallest IVIFN.

Accuracy degree of a IVIFN ~a is calculated from accuracy func- 
tion h, as follows (Wei & Wang, 2007 ):

hð~aÞ ¼ 1
2
ðaþ c þ bþ dÞ ð3Þ

where hð~aÞ 2 ½0;1�. The larger the value of hð~aÞ, the higher the accu- 
racy degree of the IVIFN ~a.

Definition 1. Let ~a1 ¼ h½a1; b1�; ½c1; d1�i and ~a2 ¼ h½a2; b2�; ½c2; d2�i
be two IVIFNs, sð~a1Þ ¼ 1

2 ða1 � c1 þ b1 � d1Þ and sð~a2Þ ¼ 1
2 ða2 � c2þ

b2 � d2Þ be the score of ~a1 and ~a2, respectively , and hð~a1Þ ¼ 1
2 ða1þ

c1 þ b1 þ d1Þ and hð~a2Þ ¼ 1
2 ða2 þ c2 þ b2 þ d2Þ be the accuracy 

degree of ~a1 and ~a2, then 

If sð~aÞ < sð~aÞ, then ð~a1Þ is smaller than ð~a2Þ, denoted by
ð~a1Þ < ð~a2Þ

If sð~a1Þ ¼ sð~a2Þ, then 
(1) if hð~a1Þ ¼ hð~a2Þ, then ~a1 represents the same information as
~a2; i.e., a1 ¼ a2; b1 ¼ b2; c1 ¼ c2; d1; d2.

(2) if hð~a1Þ < hð~a2Þ, then ~a1 is smaller than ~a2, denoted by
~a1 < ~a2 (Park et al., 2011 ).

4. Interval-val ued intuitionistic fuzzy TOPSIS 

A systematic approach to TOPSIS method for multi attribute 
decision making problems under fuzzy environment is proposed 
in this section. The weights of criteria and methods are provided 
by decision- makers as interval-val ued intuitionistic fuzzy numbers.

For MAGDM problem, let A = {A1, A2, . . . , An} be the set of n
alternativ es, D ¼ fD1;D2; . . . ; Dlg be the set of decision-ma kers 
and C = {c1, c2, . . . , cm} be the set of m attributes.



Table 3
Interval-valued intuitionist ic fuzzy decision matrix R(k).

A1 A2 . . . An

c1 ~rðkÞ11
~rðkÞ12

. . . ~rðkÞ1n

c2 ~rðkÞ21
~rðkÞ22

. . . ~rðkÞ2n

: : : :
cm ~rðkÞm1

~rðkÞm2
. . . ~rðkÞmn

Table 4
Weighted collective interval-val ued intuitionis tic fuzzy decision matrix R�.

A1 A2 . . . An

c1 ~r�11 ~r�12 . . . ~r�1n

c2 ~r�21 ~r�22 . . . ~r�2n

: : : : :
cm ~r�m1 ~r�m2 . . . ~r�mn
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Step 1: Form a committ ee of decision makers 
Step 2: Performance ratings are given to attributes with respect 
to criteria by decision-make rs. In general we have an interval- 
valued intuition istic fuzzy decision matrix, provided by deci- 

sion makers as RðkÞ ¼ ~rðkÞij

� �
mxn

; k ¼ 1;2; . . . ; l (Table 3).

where ~rðkÞij ¼ aðkÞij ; b
ðkÞ
ij

h i
; cðkÞij ; d

ðkÞ
ij

h iD E
is an IVIFN which repre- 

sents rating of alternatives with respect to attributes. Also 
define weights of criteria w = (w1, w2, . . . , wm)T.
Step 3: Pool the decision-make rs opinions to get the aggregated 
fuzzy ratings. Interval-val ued inttuitionistic fuzzy hybrid geo- 
metric (IIFGH) operator will be applied to aggregate fuzzy deci- 
sion matrices into the collective interval-val ued intuition istic 
fuzzy decision matrix. This operator helps for normalizing deci- 
sion maker’s ratings. Because some individuals may assign dis- 
temperately high or low preference values to their preferred or
repugnant objects (Xu, 2005 ). In such a case, ‘‘false’’ or ‘‘biased’’
opinions are assigned low weights. IIFGH operator helps to cor- 
rect these mistakes .

Let a ¼ ða1;a2; . . . ; alÞ be weight vector of IIFHG operator,
ak > 0 k ¼ 1;2; . . . ; l and

Pl
k¼1ak ¼ 1. ll is the mean operator of

the collection 1, 2, . . . , l and rl is the standard deviation of the col- 
lection 1, 2, . . . , l and they are obtained by the following formulas 
(Xu, 2005 ).

ll ¼
1
l

lð1þ lÞ
2

¼ 1þ l
2

ð4Þ

rl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l

Xl

i¼1

ði� llÞ
2

vuut ð5Þ

Then weight vector of IIFHG operator a = (a1, a2, . . . , al) is de- 
fined as the following:

ai ¼
1ffiffiffiffiffiffiffiffi
2prl

p e�½ði�llÞ
2=2r2

l
�

Pl
j¼1

1ffiffiffiffiffiffiffiffi
2prl

p e�½ðj�llÞ
2=2r2

l
�
¼ e�½ði�llÞ

2=2r2
l
�Pl

j¼1e�½ðj�llÞ
2=2r2

l
�
; i ¼ 1;2; . . . ; l

ð6Þ

Consider that aj 2 ½0;1� and
Pl

j¼1ai ¼ 1.
Because the mean of collection 1, 2, . . . , l is (1 + l)/2, then the 

equation above can be rewritten as

ai ¼
e�½ði�ð1þlÞ=2Þ2=2r2

l
�Pl

j¼1e�½ðj�ð1þlÞ=2Þ2=2r2
l
�
; i ¼ 1;2; . . . ; l ð7Þ

Let the second parameter vector of IIFGH operator be
k ¼ ðk1; k2; . . . ; klÞT ; kk P 0; k ¼ 1;2; . . . ; l and

Pl
k¼1kk ¼ 1.

Weight vector of decision-make rs will be applied to ~rðkÞij to get 
the weighted IVIFNs _~rðkÞij ¼ ð~r

ðkÞ
ij Þ

lkk ; i ¼ 1;2; . . . ; m; j ¼
1;2; . . . ; n.

If _~rrðkÞ
ij ¼ _arðkÞ

ij ; _brðkÞ
ij

h i
; _crðkÞ

ij ; _drðkÞ
ij

h iD E
indicates the kth largest of

the weighted IVIFNs then elements of the collective interval-val- 
ued intuitionistic fuzzy decision matrix are obtained by Eq. (8).
~rij ¼ IIFGHa;k rð1Þij ;r
ð2Þ
ij ; . . . ;r

ðlÞ
ij

� �
¼ _~rrð1Þ

ij

� �a1
� _~rrð2Þ

ij

� �a2
� . . .� _~rrðlÞ

ij

� �al

¼
Yl

k¼1

_arðkÞ
ij

� �ak
;
Yl

k¼1

_brðkÞ
ij

� �ak

" #* +
; 1�

Yl

k¼1

1� _crðkÞ
ij

� �ak
;1�

Yl

k¼1

1� _drðkÞ
ij

� �ak

" #* +

ð8Þ

Step 4: Apply attribute weights w = (w1, w2, . . . , wm)T on previ- 
ous matrix to get the weighted collective interval-val ued intui- 
tionistic fuzzy decision matrix which is shown R� ¼ ~r�ij

� �
mxn

where
Pm

i¼1wi ¼ 1 and wi > 0 h iD E

~r�ij ¼ 1� ð1� aijÞwi ;1� ð1� bijÞwi

� �
; cwi

ij ;d
wi
ij ð9Þ
Now new weighted matrix is developed (Table 4).

Step 5: Determine interval-valued intuitionistic fuzzy positive 
ideal solution (IVIFPIS) and interval-valued intuition istic fuzzy 
negative ideal solution (IVIFNIS).
IVIFPIS denoted by O� and IVIFNIS denoted by O�. Let B and C
are the set of benefit criteria and cost criteria, respectively , and 
O� ¼ hei; ðmaxj;~r�ij
���i 2 BÞ; ðminj;~r�ij

���i 2 CiÞ
���i ¼ 1;2; . . . ;m

n oT

¼ f~rþ1 ;~rþ2 ; . . . ;~rþmg ð10Þ
O� ¼ hei; ðminj;~r�ij
���i 2 BÞ; ðmaxj;~r�ij

���i 2 CiÞ
���i ¼ 1;2; . . . ;m

n oT

¼ f~r�1 ;~r�2 ; . . . ;~r�mg ð11Þ
where ~rþi ¼ aþi ; b
þ
i

� �
; cþi ;d

þ
i

� �� 	
and ~r�i ¼ a�i ; b

�
i

� �
; c�i ; d

�
i

� �� 	
; i ¼ 1;

2; . . . ;m.
Step 6: Calculate the separation means.

The distance of each alternative from O� and O� and which is
known as separation means, can be calculated from extension of
Grzegorzew ski’s method as (Grzegorzewski , 2004 );
S�j ¼
1

2n

Xm

i¼1

max a�ij�aþi
��� ���; b�ij�bþi

��� ���� �
þmax c�ij� cþi

��� ���; d�ij�dþi
��� ���� �h i

ð12Þ
S�j ¼
1

2n

Xm

i¼1

max a�ij�a�i
��� ���; b�ij�b�i

��� ���� �
þmax c�ij� c�i

��� ���; d�ij�d�i
��� ���� �h i

ð13Þ
Step 7: Calculate the closeness coefficient.
The closeness coefficient determines the ranking order of each 

alternativ es and calculated as

Cj ¼
S�j

S�j þ S�j
ð14Þ

Step 8: According to closeness coefficient, ranking order of each 
alternative can be determined.
An alternative is closer to IVIFPIS and farther from IVFINIS as

closeness coefficient Cj approaches to 1. The value of Cj varies be- 
tween 0 and 1. Therefore, the ranking order can be determined 
accordin g the Cj. The bigger closeness coefficient, the better the 
alternativ e Aj will be.



Table 5
Criteria weights.

Criteria Weights 

Data availability 0.19 
Data validity 0.17 
Tech. development predictability 0.23 
Tech. similarity 0.05 
Method adaptability 0.14 
Ease of operation 0.09 
Implementation cost 0.13 
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5. Survey design 

3D TV technology was selected for the forecasti ng problem. The 
alternative forecasting techniques used are the ones that are dis- 
cussed in literature section namely trend analysis, growth curve 
analysis, Fisher Pry analysis, analogy, morphologi cal matrices, pat- 
ent analysis, scanning/m onitoring/track ing, scenarios, Monte Carlo 
models, Delphi survey, relevance trees, cross impact analysis.
These alternatives will be evaluated with respect to seven criteria 
cj (j = 1, 2, . . . , 7) which are data availability (c1), data validity (c2),
technology development predictability (c3), technolo gy similarity 
(c4), method adaptability (c5), ease of operation (c6), implementa- 
tion cost (c7). Benefit attributes are c1, c2, c3, c4, c6 and cost attri- 
butes are c5 and c7.

5.1. Knowledge acquisition 

Knowledge acquisition, also known as knowled ge elicitation, in- 
volves extracting problem- solving expertise from knowledge 
sources, which are usually domain experts Hoffman (1987). Firstly,
because group productivi ty is both quantitative ly and qualitativ ely 
better to that of an average individual (Liou, 1999 ) a group of ex- 
perts is preferred for knowledge acquisition process of this study.

Secondly, the knowledge acquisition process involved one facil- 
itator who has a competency on both interval-valued intuitionisti c
fuzzy group decision making process and forecasting techniques 
also interacting with two domain experts, each of which brings a
certain set of attributes to this interaction. The facilitato r presented 
the questions to the group and then monitored the responses from 
the experts. The group interaction is allowed the expression of di- 
verse opinions about the alternatives with respect to each crite- 
rion. A domain expert is defined as an articulate, knowledgeabl e
person with a reputation for producing good solutions to problems 
in a particular field (Waterman, 1985 ). On the other hand multiple 
domain experts can provide the mix of knowledge that is required 
in a complex structure and provide coverage for the many prob- 
lems and solutions (Money & Harrald, 1995 ). In this study the ex- 
perts’ domain covered to a certain extent the areas of technology 
forecasting, technology managemen t, strategic managemen t and 
television technology.

A decision maker cannot be expected to have sufficient exper- 
tise to comment on all aspects of the problem but on a part of the 
problem for which he/she is competent (Weiss & Rao, 1987 ).
Therefore determining the weights of every decision maker is also 
an important problem in decision making. Although it is difficult
to assess each decision maker in terms of the level of their exper- 
tise on the main problem area as well as in sub areas, there are 
some trials to solve this problem with methods like application 
of eigenvec tor based method by Ramanathan and Ganesh 
(1994), TOPSIS model by Yue (2012), AHP model by Van den Hon- 
ert (2001) and please refer to Yue (2012) for some other related 
research methods. In this paper for the sake of practicality 
weights are determined by group members by weighing each 
other according to the level of their expertise on technology fore- 
casting and sub areas such as technology managemen t and TV
technologie s.

5.2. Application 

The steps of the methodology proposed are as follows:

Step 1: three decision makers who are the experts on the prob- 
lem area were selected as

D ¼ fD1;D2;D3g
Step 2: Weights of criteria were given by each expert as crisp 
numbers on 1–10 scale. These three criteria ratings were com- 
bined by calculating arithmetic means and then linear normal- 
ization was made for final weights. Table 5 shows the priorities 
of the evaluation criteria.
According to Table 5 technology developmen t similarity has the 

highest weight of 0.23, followed by the criterion data availabili ty
0.19. Technolo gy similarity and ease of operation have the weights 
of 0.05 and 0.09 are comparatively unimportan t.

Experts were required to give performanc e ratings to all techno- 
logical forecasting methods with respect to criteria. Thus interval- 
valued intuitionisti c fuzzy decision matrices RðkÞ ¼ ~rðkÞij

� �
12x7

were
created as Tables 6–8.

Step 3: The decision-ma kers opinions pooled to get the aggre- 
gated fuzzy ratings by utilizing IIFGH operator and collective 
interval-val ued intuitionistic fuzzy decision matrix was formed 
as Table 9. Weight vector of decision makers was found as
k = (0.45, 0.35, 0.2)T according to their expertise level. These 

weights were applied to each decision matrix as ~r
_ðkÞ

ij ¼ ~rðkÞij

� �lkk
.

The weight vector of IIFHG operator was calculated from Eqs.
(4), (5), (7). Then collective interval-valued intuition istic fuzzy 
decision matrix was calculated from Eq. (8).
Also IIFGH operator weights were found as a = (0.243, 0.514,
0.243)T.
Step 4: The weight of criteria was aggregated using Eq. (9) to get 
the weighted collective interval-valued intuition istic fuzzy 
decision matrix. Results are shown was in Table 10.
Step 5: Interval- valued intuitionisti c fuzzy positive ideal solu- 
tion (IVIFPIS) and interval-valued intuitionisti c fuzzy negative 
ideal solution (IVIFNIS) were determined using Eqs. (10) and 
(11) and given in Table 11.
Step 6: Calculate Sast 

j and S�j separation means as Eqs. (12) and 
(13).
Step 7: Calculate the closeness coefficient. The results are given 
in Table 12.
Step 8: According to closeness coefficient, ranking order of each 
alternativ e could be determined. Ranking order is seen in
Table 13.

5.3. Sensitivity analysis 

TOPSIS is a decision- making method to find the best alternative 
among a set of feasible alternatives or to rank the alternatives con- 
sidering several criteria. To give a correct decision, the order ob- 
tained from the method should be reliable. But TOPSIS method 
can produce ‘‘rank reversal’’ outcome s when an alternative is
added or removed (García-Cascales & Lamata, 2012; Wang & Luo,
2009).

Fisher-Pry , growth curves, technical trend analysis, patent 
analysis, Monte Carlo method and analogy analysis are top six 
methods with closeness coefficient greater than 0.5. As the 



Table 6
Interval-valued intuitionist ic fuzzy decision matrix R(1).

Methods Data availability Data validity Tech. development 
predictability 

Tech. similarity Method 
adaptability 

Ease of operation Implementation 
cost 

Decision maker 1
Tech. trend analysis ([0.6; 0.8]; [0.1;

0.2])
([0.6; 0.75];
[0.05; 0.15])

([0.6; 0.85]; [0.05;
0.15])

([0.1; 0.2]; [0.7;
0.8])

([0.3; 0.5]; [0.4;
0.5])

([0.6; 0.8]; [0.1;
0.2])

([0.2; 0.4]; [0.5;
0.6])

Growth curves ([0.5; 0.7]; [0.2;
0.3])

([0.6; 0.8]; [0.1;
0.2])

([0.7; 0.9]; [0.05; 0.1]) ([0.15; 0.3]; [0.6;
0.7])

([0.2; 0.4]; [0.5;
0.6])

([0.7; 0.85]; [0.1;
0.15])

([0.1; 0.3]; [0.5;
0.7])

Fisher-Pry ([0.65; 0.75];
[0.15; 0.2])

([0.7; 0.85]; [0.1;
0.15])

([0.8; 0.9]; [0.05; 0.1]) ([0.65; 0.85];
[0.1; 0.15])

([0.25; 0.5]; [0.3;
0.45])

([0.55; 0.7];
[0.15; 0.25])

([0.15; 0.4]; [0.5;
0.6])

Analogy analysis ([0.2; 0.35]; [0.5;
0.65])

([0.2; 0.3]; [0.6;
0.7])

([0.25; 0.5]; [0.3; 0.5]) ([0.8; 0.95]; [0.0;
0.05])

([0.4; 0.8]; [0.1;
0.2])

([0.65; 0.8]; [0.1;
0.2])

([0.25; 0.6]; [0.3;
0.4])

Morphological 
matrices 

([0.3; 0.6]; [0.2;
0.4])

([0.3; 0.5]; [0.2;
0.5])

([0.4; 0.65]; [0.1;
0.35])

([0.45; 0.7]; [0.2;
0.3])

([0.5; 0.85];
[0.05; 0.15])

([0.15; 0.6]; [0.2;
0.4])

([0.5; 0.8]; [0.1;
0.2])

Patent analysis ([0.4; 0.65]; [0.2;
0.35])

([0.5; 0.7]; [0.1;
0.3])

([0.35; 0.7]; [0.2; 0.3]) ([0.05; 0.1]; [0.6;
0.8])

([0.2; 0.4]; [0.3;
0.6])

([0.75; 0.9];
[0.05; 0.10])

([0.1; 0.2]; [0.6;
0.8])

Scanning,
monitoring,
tracking 

([0.6; 0.8]; [0.1;
0.2])

([0.3; 0.6]; [0.2;
0.35])

([0.2; 0.6]; [0.2; 0.3]) ([0.6; 0.8]; [0.05;
0.15])

([0.7; 0.95]; [0.0;
0.05])

([0.1; 0.4]; [0.4;
0.6])

([0.65; 0.85];
[0.1; 0.15])

Scenario writing ([0.2; 0.4]; [0.5;
0.6])

([0.4; 0.6]; [0.2;
0.35])

([0.2; 0.4]; [0.5; 0.6]) ([0.6; 0.8]; [0.1;
0.2])

([0.6; 0.85]; [0.1;
0.15])

([0.1; 0.3]; [0.5;
0.65])

([0.75; 0.85];
[0.1; 0.15])

Monte Carlo models ([0.5; 0.8]; [0.1;
0.2])

([0.5; 0.7]; [0.1;
0.25])

([0.75; 0.9]; [0.0;
0.05])

([0.25; 0.35];
[0.4; 0.6])

([0.4; 0.6]; [0.3;
0.4])

([0.6; 0.8]; [0.1;
0.2])

([0.5; 0.8]; [0.1;
0.2])

Delphi ([0.1; 0.3]; [0.5;
0.7])

([0.4; 0.5]; [0.3;
0.5])

([0.3; 0.7]; [0.1; 0.3]) ([0.7; 0.85];
[0.05; 0.15])

([0.6; 0.75]; [0.1;
0.2])

([0.2; 0.4]; [0.5;
0.6])

([0.7; 0.85]; [0.0;
0.1])

Relevance trees ([0.3; 0.6]; [0.3;
0.4])

([0.5; 0.6]; [0.2;
0.4])

([0.3; 0.4]; [0.3; 0.5]) ([0.6; 0.8]; [0.1;
0.2])

([0.7; 0.85]; [0.1;
0.15])

([0.3; 0.5]; [0.2;
0.4])

([0.75; 0.9];
[0.05; 0.1])

Cross-impact 
analysis 

([0.3; 0.5]; [0.2;
0.4])

([0.5; 0.7]; [0.1;
0.2])

([0.6; 0.75]; [0.1; 0.2]) ([0.7; 0.9]; [0.0;
0.1])

([0.7; 0.85];
[0.05; 0.1])

([0.3; 0.5]; [0.4;
0.5])

([0.8; 0.9]; [0.0;
0.1])

Table 7
Interval-valued intuitionist ic fuzzy decision matrix R(2).

Methods Data availability Data validity Tech. development 
predictability 

Tech.
similarity 

Method 
adaptability 

Ease of
operation 

Implementation 
cost 

Decision maker 2
Tech. trend analysis ([0.65; 0.75];

[0.1; 0.2])
([0.8; 0.9]; [0.07;
0.1])

([0.5; 0.7]; [0.2; 0.3]) ([0.1; 0.3];
[0.5; 0.7])

([0.2; 0.5]; [0.4;
0.5])

([0.4; 0.7]; [0.2;
0.3])

([0.3; 0.6]; [0.25;
0.35])

Growth curves ([0.6; 0.7]; [0.1;
0.2])

([0.8; 0.9]; [0.07;
0.1])

([0.7; 0.9]; [0.05; 0.1]) ([0.1; 0.4];
[0.5; 0.6])

([0.2; 0.4]; [0.3;
0.6])

([0.4; 0.7]; [0.2;
0.3])

([0.2; 0.6]; [0.3;
0.4])

Fisher-Pry ([0.6; 0.8]; [0.05;
0.2])

([0.7; 0.9]; [0.01;
0.05])

([0.6; 0.8]; [0.1; 0.2]) ([0.6; 0.9];
[0.0; 0.1])

([0.4; 0.6]; [0.2;
0.4])

([0.4; 0.6]; [0.2;
0.4])

([0.2; 0.65]; [0.3;
0.35])

Analogy analysis ([0.2; 0.5]; [0.3;
0.5])

([0.1; 0.5]; [0.4;
0.5])

([0.4; 0.6]; [0.3; 0.4]) ([0.9; 1.0];
[0.0; 0.0])

([0.5; 0.7]; [0.2;
0.3])

([0.5; 0.8]; [0.1;
0.2])

([0.4; 0.75]; [0.1;
0.25])

Morphological 
matrices 

([0.3; 0.6]; [0.2;
0.4])

([0.2; 0.5]; [0.2;
0.5])

([0.5; 0.7]; [0.1; 0.3]) ([0.4; 0.7];
[0.1; 0.3])

([0.6; 0.9]; [0.01;
0.1])

([0.2; 0.5]; [0.2;
0.4])

([0.6; 0.85];
[0.05; 0.15])

Patent analysis ([0.4; 0.7]; [0.1;
0.2])

([0.4; 0.7]; [0.1;
0.3])

([0.45; 0.7]; [0.2; 0.3]) ([0.1; 0.4];
[0.4; 0.6])

([0.1; 0.2]; [0.5;
0.8])

([0.8; 0.95]; [0.0;
0.05])

([0.3; 0.4]; [0.5;
0.6])

Scanning, monitoring,
tracking 

([0.5; 0.7]; [0.2;
0.3])

([0.5; 0.6]; [0.3;
0.4])

([0.35; 0.55]; [0.3; 0.4]) ([0.4; 0.6];
[0.2; 0.3])

([0.6; 0.8]; [0.1;
0.2])

([0.2; 0.5]; [0.3;
0.4])

([0.5; 0.8]; [0.1;
0.2])

Scenario writing ([0.2; 0.3]; [0.5;
0.6])

([0.4; 0.5]; [0.3;
0.5])

([0.3; 0.4]; [0.4; 0.6]) ([0.5; 0.7];
[0.2; 0.3])

([0.8; 0.95]; [0.0;
0.05])

([0.3; 0.5]; [0.4;
0.5])

([0.7; 0.8]; [0.1;
0.2])

Monte Carlo models ([0.5; 0.7]; [0.2;
0.3])

([0.6; 0.7]; [0.1;
0.2])

([0.7; 0.8]; [0.1; 0.2]) ([0.4; 0.5];
[0.2; 0.3])

([0.5; 0.7]; [0.1;
0.2])

([0.7; 0.85]; [0.1;
0.15])

([0.7; 0.8]; [0.1;
0.2])

Delphi ([0.1; 0.3];([0.5;
0.7])

([0.2; 0.4]; [0.4;
0.6])

([0.7; 0.8]; [0.1; 0.2]) ([0.7; 0.8];
[0.1; 0.2])

([0.7; 0.9]; [0.0;
0.1])

([0.5; 0.7]; [0.1;
0.2])

([0.7; 0.9]; [0.0;
0.1])

Relevance trees ([0.2; 0.3]; [0.5;
0.6])

([0.5; 0.6]; [0.2;
0.3])

([0.5; 0.6]; [0.2; 0.3]) ([0.5; 0.6];
[0.2; 0.3])

([0.8; 0.95]; [0.0;
0.05])

([0.5; 0.6]; [0.1;
0.4])

([0.7; 0.85]; [0.1;
0.15])

Cross-impact analysis ([0.4; 0.5]; [0.4;
0.5])

([0.3; 0.5]; [0.3;
0.4])

([0.7; 0.9]; [0.0; 0.1]) ([0.6; 0.8];
[0.1; 0.2])

([0.8; 0.9]; [0.0;
0.1])

([0.6; 0.8]; [0.05;
0.15])

([0.6; 0.8]; [0.1;
0.2])
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remained six methods have closeness coefficients which are less 
than 0.3, they cannot be selected for forecasti ng 3D television 
technology. The best two alternatives, Fisher-Pry and growth 
curve have very similar coefficients. Due to the rank reversal 
problem arising in TOPSIS, extracting low valued alternativ es
may affect closeness coefficients of the top six alternatives and 
especially the ranking of the best two alternatives. To consider 
the rank reversal problem, we reapplied proposed TOPSIS meth- 
od for six methods which have closeness coefficient higher than 
0.5. In Table 14, second column represents the coefficients of top 
six alternatives when low valued alternatives are kept out. The 
ranking is the same with Table 13.
García-Cascales and Lamata (2012) proposed a method to solve 
the rank reversal problem by introducing fictitious alternativ es
into problem. These alternativ es correspond with the best possible 
alternativ e and the worst possible one. In TOPSIS based on inter- 
val-value d intuitionistic fuzzy numbers, the weights of the best fic-
titious alternative and the worst alternative are defined as below,
for benefit criteria and cost criteria, respectively :

� ~rbest ¼ h½1;1�; ½0;0�i for benefit criteria 
� ~rbest ¼ h½0;0�; ½1;1�i for cost criteria 
� ~rworst ¼ h½0;0�; ½1;1�i for benefit criteria 
� ~rworst ¼ h½1;1�; ½0;0�i for cost criteria 



Table 8
Interval-valued intuitionist ic fuzzy decision matrix R(3).

Methods Data availability Data validity Tech. development 
predictability 

Tech. similarity Method 
adaptability 

Ease of
operation 

Implementation 
cost 

Decision maker 3
Tech. trend analysis ([0.7; 0.9]; [0.0;

0.1])
([0.6; 0.7]; [0.2;
0.3])

([0.5; 0.6]; [0.2; 0.3]) ([0.1; 0.2]; [0.6;
0.7])

([0.05; 0.10];
[0.8; 0.9])

([0.3; 0.7]; [0.1;
0.25])

([0.2; 0.5]; [0.4;
0.5])

Growth curves ([0.5; 0.8]; [0.1;
0.2])

([0.55; 0.7];
[0.15; 0.25])

([0.7; 0.9]; [0.05; 0.1]) ([0.1; 0.3]; [0.5;
0.7])

([0.2; 0.4]; [0.4;
0.6])

([0.4; 0.6]; [0.2;
0.3])

([0.3; 0.6]; [0.3;
0.4])

Fisher-Pry ([0.7; 0.8];
[0.05; 0.15])

([0.6; 0.8]; [0.1;
0.2])

([0.6; 0.8]; [0.1; 0.2]) ([0.7; 0.9]; [0.05;
0.1])

([0.3; 0.6]; [0.3;
0.4])

([0.3; 0.5]; [0.3;
0.4])

([0.4; 0.7]; [0.2;
0.3])

Analogy analysis ([0.3; 0.4]; [0.4;
0.55])

([0.2; 0.4]; [0.5;
0.6])

([0.25; 0.35]; [0.4; 0.6]) ([0.85; 0.95];
[0.0; 0.05])

([0.6; 0.8]; [0.1;
0.2])

([0.4; 0.6]; [0.2;
0.35])

([0.5; 0.7]; [0.1;
0.2])

Morphological 
matrices 

([0.2; 0.3]; [0.5;
0.7])

([0.1; 0.3]; [0.6;
0.7])

([0.5; 0.7]; [0.1; 0.2]) ([0.5; 0.6]; [0.2;
0.4])

([0.6; 0.9]; [0.05;
0.1])

([0.2; 0.4]; [0.4;
0.5])

([0.5; 0.8]; [0.1;
0.2])

Patent analysis ([0.35; 0.6];
[0.2; 0.35])

([0.4; 0.6]; [0.3;
0.35])

([0.3; 0.5]; [0.3; 0.4]) ([0.1; 0.15]; [0.7;
0.85])

([0.0; 0.05]; [0.8;
0.95])

([0.7; 0.9]; [0.0;
0.10])

([0.2; 0.4]; [0.4;
0.55])

Scanning,
monitoring,
tracking 

([0.6; 0.7]; [0.1;
0.25])

([0.3; 0.6]; [0.2;
0.3])

([0.2; 0.4]; [0.4; 0.5]) ([0.7; 0.9]; [0.0;
0.1])

([0.7; 0.85];
[0.05; 0.15])

([0.1; 0.3]; [0.5;
0.7])

([0.6; 0.8]; [0.1;
0.2])

Scenario writing ([0.3; 0.5]; [0.4;
0.5])

([0.25; 0.5]; [0.4;
0.5])

([0.3; 0.4]; [0.4; 0.6]) ([0.7; 0.8]; [0.1;
0.2])

([0.7; 0.85];
[0.05; 0.10])

([0.2; 0.3]; [0.6;
0.8])

([0.5; 0.7]; [0.1;
0.3])

Monte Carlo models ([0.5; 0.6]; [0.2;
0.3])

([0.5; 0.7]; [0.1;
0.2])

([0.75; 0.85]; [0.1;
0.15])

([0.2; 0.35]; [0.5;
0.65])

([0.3; 0.4]; [0.4;
0.6])

([0.5; 0.7]; [0.2;
0.3])

([0.4; 0.5]; [0.4;
0.5])

Delphi ([0.3; 0.45];
[0.4; 0.55])

([0.1; 0.3]; [0.4;
0.6])

([0.6; 0.8]; [0.1; 0.2]) ([0.7; 0.8]; [0.1;
0.2])

([0.65; 0.75];
[0.1; 0.2])

([0.2; 0.3]; [0.5;
0.6])

([0.7; 0.8]; [0.1;
0.2])

Relevance trees ([0.2; 0.4]; [0.4;
0.55])

([0.2; 0.3]; [0.5;
0.7])

([0.2; 0.3]; [0.5; 0.6]) ([0.6; 0.75]; [0.1;
0.25])

([0.6; 0.7]; [0.2;
0.3])

([0.1; 0.2]; [0.6;
0.7])

([0.4; 0.6]; [0.2;
0.35])

Cross-impact 
analysis 

([0.4; 0.5]; [0.3;
0.5])

([0.2; 0.4]; [0.5;
0.6])

([0.6; 0.75]; [0.15;
0.20])

([0.7; 0.8]; [0.1;
0.2])

([0.7; 0.8]; [0.1;
0.2])

([0.1; 0.3]; [0.5;
0.7])

([0.7; 0.85]; [0.1;
0.15])

Table 9
Collective interval-valued intuitionist ic fuzzy decision matrix R.

Methods Data availability Data validity Tech. development 
predictability 

Tech. similarity Method 
adaptability 

Ease of operation Implementation 
cost 

Tech. trend 
analysis 

([0.636; 0.784];
[0.087; 0.189])

([0.682; 0.794];
[0.099; 0.173])

([0.531; 0.757];
[0.118; 0.226])

([0.097; 0.244];
[0.595; 0.742])

([0.186; 0.370];
[0.513; 0.630])

([0.466; 0.742];
[0.135; 0.250])

([0.244; 0.508];
[0.367; 0.470])

Growth curves ([0.547; 0.710];
[0.135; 0.237])

([0.664; 0.811];
[0.098; 0.172])

([0.697; 0.899];
[0.051; 0.101])

([0.111; 0.345];
[0.540; 0.655])

([0.196; 0.395];
[0.390; 0.605])

([0.531; 0.739];
[0.148; 0.225])

([0.165; 0.475];
[0.376; 0.525])

Fisher-Pry ([0.626; 0.781];
[0.085; 0.195])

([0.706; 0.874];
[0.067; 0.126])

([0.698; 0.850];
[0.075; 0.150])

([0.626; 0.882];
[0.041; 0.118])

([0.325; 0.561];
[0.251; 0.421])

([0.439; 0.619];
[0.199; 0.333])

([0.197; 0.557];
[0.364; 0.443])

Analogy analysis ([0.208; 0.427];
[0.390; 0.566])

([0.135; 0.405];
[0.492; 0.595])

([0.316; 0.519];
[0.319; 0.471])

([0.861; 0.968];
[0.000; 0.032])

([0.473; 0.742];
[0.157; 0.258])

([0.548; 0.750];
[0.122; 0.231])

([0.350; 0.687];
[0.172; 0.299])

Morphological 
matrices 

([0.302; 0.512];
[0.291; 0.488])

([0.220; 0.460];
[0.338; 0.540])

([0.460; 0.680];
[0.101; 0.307])

([0.424; 0.681];
[0.150; 0.319])

([0.561; 0.882];
[0.029; 0.118])

([0.178; 0.509];
[0.235; 0.420])

([0.547; 0.824];
[0.075; 0.176])

Patent analysis ([0.387; 0.665];
[0.150; 0.277])

([0.425; 0.681];
[0.134; 0.311])

([0.386; 0.663];
[0.218; 0.319])

([0.102; 0.207];
[0.552; 0.740])

([0.000; 0.201];
[0.516; 0.799])

([0.770; 0.923];
[0.017; 0.077])

([0.194; 0.315];
[0.527; 0.680])

Scanning,
monitoring,
tracking 

([0.546; 0.742];
[0.135; 0.250])

([0.389; 0.596];
[0.258; 0.374])

([0.265; 0.536];
[0.288; 0.390])

([0.527; 0.740];
[0.088; 0.197])

([0.651; 0.890];
[0.034; 0.110])

([0.153; 0.428];
[0.376; 0.552])

([0.577; 0.817];
[0.109; 0.183])

Scenario writing ([0.208; 0.349];
[0.491; 0.592])

([0.342; 0.531];
[0.274; 0.438])

([0.258; 0.395];
[0.439; 0.605])

([0.558; 0.757];
[0.135; 0.243])

([0.716; 0.890];
[0.049; 0.094])

([0.000; 0.000];
[1.000; 1.000])

([0.678; 0.798];
[0.101; 0.202])

Monte Carlo 
models 

([0.468; 0.726];
[0.150; 0.258])

([0.547; 0.697];
[0.101; 0.219])

([0.717; 0.857];
[0.041; 0.110])

([0.306; 0.430];
[0.355; 0.511])

([0.428; 0.582];
[0.260; 0.398])

([0.624; 0.799];
[0.122; 0.201])

([0.494; 0.731];
[0.160; 0.269])

Delphi ([0.114; 0.313];
[0.491; 0.687])

([0.251; 0.411];
[0.364; 0.572])

([0.516; 0.763];
[0.101; 0.237])

([0.697; 0.814];
[0.085; 0.186])

([0.676; 0.811];
[0.065; 0.155])

([0.301; 0.466];
[0.374; 0.473])

([0.697; 0.867];
[0.015; 0.117])

Relevance trees ([0.227; 0.451];
[0.393; 0.506])

([0.410; 0.517];
[0.269; 0.463])

([0.344; 0.448];
[0.321; 0.452])

([0.546; 0.721];
[0.135; 0.250])

([0.718; 0.838];
[0.098; 0.162])

([0.260; 0.429];
[0.270; 0.483])

([0.657; 0.821];
[0.101; 0.169])

Cross-impact 
analysis 

([0.359; 0.495];
[0.330; 0.474])

([0.357; 0.562];
[0.288; 0.385])

([0.660; 0.811];
[0.081; 0.155])

([0.651; 0.850];
[0.041; 0.150])

([0.753; 0.862];
[0.048; 0.122])

([0.291; 0.519];
[0.326; 0.473])

([0.714; 0.857];
[0.041; 0.143])
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The results of proposed TOPSIS method, when the best and the 
worst fictitious alternatives are added to the problem, are given 
third column of Table 14. No difference is occurred in the ranking 
of the alternatives indicating that the result is reliable.
6. Results and discussion 

Fisher Pry method has the highest closeness coefficient of
0.6198 therefore the most suitable for forecasting 3D TV technol- 
ogy. It is followed by the growth curve method with 0.596. This re- 
sult is understa ndable since both techniques depends on the same 
assumpti ons and they both are quantitative techniques. In addition 
the presence of historical data of 3D TV technology makes it possi- 
ble to apply quantitative techniques.

Table 13 indicates that normative techniqu es are appropriate 
for this problem. The results are discussed by experts and they also 
approved the results and found them understa ndable. In addition,
although Delphi is one of the most commonl y used technique,
accordin g to the results, it was not found appropriate for forecast- 



Table 10
Weighted collective interval-valued intuitionistic fuzzy decision matrix R�.

Methods Data availability Data validity Tech. development 
predictability 

Tech. similarity Method 
adaptability 

Ease of operation Implementation 
cost 

Tech. trend 
analysis 

([0.175; 0.253];
[0.629; 0.729])

([0.177; 0.236];
[0.675; 0.742])

([0.160; 0.278];
[0.612; 0.710])

([0.005; 0.014];
[0.974; 0.985])

([0.028; 0.063];
[0.911; 0.937])

([0.055; 0.115];
[0.835; 0.883])

([0.036; 0.088];
[0.878; 0.907])

Growth curves ([0.140; 0.210];
[0.684; 0.761])

([0.169; 0.247];
[0.674; 0.741])

([0.240; 0.410];
[0.504; 0.590])

([0.006; 0.021];
[0.970; 0.979])

([0.030; 0.068];
[0.876; 0.932])

([0.066; 0.114];
[0.842; 0.874])

([0.023; 0.080];
[0.881; 0.920])

Fisher-Pry ([0.170; 0.251];
[0.626; 0.733])

([0.188; 0.297];
[0.632; 0.703])

([0.241; 0.354];
[0.551; 0.646])

([0.048; 0.101];
[0.852; 0.899])

([0.054; 0.109];
[0.824; 0.886])

([0.051; 0.083];
[0.865; 0.906])

([0.028; 0.100];
[0.877; 0.900])

Analogy analysis ([0.043; 0.100];
[0.836; 0.898])

([0.024; 0.084];
[0.886; 0.916])

([0.084; 0.155];
[0.769; 0.841])

([0.094; 0.158];
[0.000; 0.842])

([0.086; 0.173];
[0.772; 0.827])

([0.069; 0.117];
[0.828; 0.876])

([0.054; 0.140];
[0.795; 0.855])

Morphological 
matrices 

([0.066; 0.127];
[0.791; 0.873])

([0.041; 0.099];
[0.832; 0.901])

([0.132; 0.231];
[0.590; 0.762])

([0.027; 0.056];
[0.910; 0.944])

([0.109; 0.259];
[0.609; 0.741])

([0.017; 0.062];
[0.878; 0.925])

([0.098; 0.202];
[0.714; 0.798])

Patent analysis ([0.089; 0.188];
[0.697; 0.784])

([0.090; 0.177];
[0.711; 0.820])

([0.106; 0.221];
[0.704; 0.769])

([0.005; 0.012];
[0.971; 0.985])

([0.000; 0.031];
[0.912; 0.969])

([0.124; 0.206];
[0.693; 0.794])

([0.028; 0.048];
[0.920; 0.951])

Scanning,
monitoring,
tracking 

([0.139; 0.227];
[0.684; 0.768])

([0.080; 0.143];
[0.794; 0.846])

([0.068; 0.162];
[0.751; 0.805])

([0.037; 0.065];
[0.886; 0.922])

([0.137; 0.266];
[0.623; 0.734])

([0.015; 0.049];
[0.916; 0.948])

([0.106; 0.198];
[0.750; 0.802])

Scenario writing ([0.043; 0.078];
[0.874; 0.905])

([0.069; 0.121];
[0.802; 0.869])

([0.066; 0.109];
[0.827; 0.891])

([0.040; 0.068];
[0.905; 0.932])

([0.162; 0.266];
[0.656; 0.718])

([0.000; 0.000];
[1.000; 1.000])

([0.137; 0.188];
[0.742; 0.812])

Monte Carlo 
models 

([0.113; 0.218];
[0.697; 0.773])

([0.126; 0.184];
[0.677; 0.772])

([0.252; 0.361];
[0.480; 0.602])

([0.018; 0.028];
[0.950; 0.967])

([0.075; 0.115];
[0.828; 0.879])

([0.084; 0.134];
[0.828; 0.866])

([0.085; 0.157];
[0.788; 0.843])

Delphi ([0.023; 0.069];
[0.874; 0.931])

([0.048; 0.086];
[0.842; 0.909])

([0.154; 0.282];
[0.590; 0.718])

([0.058; 0.081];
[0.884; 0.919])

([0.146; 0.208];
[0.682; 0.770])

([0.032; 0.055];
[0.915; 0.935])

([0.144; 0.231];
[0.579; 0.757])

Relevance trees ([0.048; 0.108];
[0.837; 0.879])

([0.086; 0.116];
[0.800; 0.877])

([0.092; 0.128];
[0.770; 0.833])

([0.039; 0.062];
[0.905; 0.933])

([0.162; 0.225];
[0.722; 0.775])

([0.027; 0.049];
[0.889; 0.937])

([0.130; 0.200];
[0.742; 0.794])

Cross-impact 
analysis 

([0.081; 0.122];
[0.810; 0.868])

([0.072; 0.131];
[0.809; 0.850])

([0.220; 0.318];
[0.561; 0.651])

([0.051; 0.090];
[0.852; 0.910])

([0.178; 0.242];
[0.654; 0.745])

([0.030; 0.064];
[0.904; 0.935])

([0.150; 0.223];
[0.660; 0.777])

Table 11
IVIFPIS and IVIFPNIS.

O� O�

([0.023; 0.069]; [0.874; 0.931]) ([0.175; 0.253]; [0.629; 0.729])
([0.024; 0.084]; [0.886; 0.916]) ([0.188; 0.297]; [0.632; 0.703])
([0.066; 0.109]; [0.827; 0.891]) ([0.240; 0.410]; [0.504; 0.590])
([0.005; 0.014]; [0.974; 0.985]) ([0.094; 0.158]; [0.000; 0.842])
([0.162; 0.266]; [0.656; 0.718]) ([0.000; 0.031]; [0.912; 0.969])
([0.000; 0.000]; [1.000; 1.000]) ([0.124; 0.206]; [0.693; 0.794])
([0.144; 0.231]; [0.579; 0.757]) ([0.028; 0.048]; [0.920; 0.951])

Table 12
Separation means and closeness coefficients.

Methods S�j negative ideal 
solution 

S�j positive ideal 
solution 

Closeness 
coefficients

Tech. trend analysis 0.168 0.132 0.559 
Growth curves 0.177 0.120 0.596 
Fisher-Pry 0.185 0.113 0.619 
Analogy analysis 0.149 0.148 0.502 
Morphological 

matrices 
0.081 0.233 0.258 

Patent analysis 0.166 0.135 0.551 
Scanning,

monitoring,
tracking 

0.084 0.221 0.274 

Scenario writing 0.036 0.264 0.119 
Monte Carlo models 0.156 0.149 0.511 
Delphi 0.063 0.240 0.207 
Relevance trees 0.064 0.237 0.213 
Cross-impact 

analysis 
0.087 0.213 0.290 

Table 13
Ranking order of alternatives.

Methods Closeness coefficient

Fisher-Pry 0.619 
Growth curves 0.596 
Tech. trend analysis 0.559 
Patent analysis 0.551 
Monte Carlo models 0.511 
Analogy analysis 0.502 
Cross-impact analysis 0.290 
Scanning, monitoring, tracking 0.274 
Morphological matrices 0.258 
Relevance trees 0.213 
Delphi 0.207 
Scenario writing 0.119 
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ing 3D TV technolo gy. Both Scenario Writing and Delphi techniqu e
are qualitativ e techniqu es since they partially depend on brain 
storming.
7. Conclusion 

Selection of technological forecasting technique is a difficult
problem that includes quantitative and qualitative aspects. In addi- 
tion, the process is costly and usually time consuming. During the 
selection process, information of forecasti ng techniques with re- 
spect to criteria are usually uncertain, therefore, decision makers 
cannot easily express judgments and grade techniques with exact 
and crisp values. Therefore, the aim of this study is to provide an
effective selection tool that overcomes these difficulties and pro- 
vides accurate results to the decision makers.

IVIFS is a useful tool to deal with fuzziness and uncertainty in
MADM problems . In addition to this, to avoid an unreasonably 
large number of pairwise comparis ons, the fuzzy TOPSIS is a better 
procedure to achieve the ranking results. In this paper interval-val -
ued intuitionisti c fuzzy TOPSIS model is employed for selecting 
technolo gical forecasting technique under fuzzy environm ent. For 
each technolo gical forecasting technique, the group decision ma- 
trix are characterized by IVIFNs. To the best of our knowledge, this 
is the first time that IVIFT is applied to the selection of technolo g-
ical forecasting technique. In addition, because TOPSIS method can 
produce rank reversal outcomes when an alternative is added or
removed a sensitivity analysis is also proposed by keeping only 
the best six alternatives as well as by introducing fictitious alterna- 
tives as the best possible alternative and the worst possible one.

On the other hand there is a limitation of the model developed.
It will get harder to make the scoring for the decision makers when 



Table 14
The results of sensitivity analysis.

Alternatives Keeping only the 
best 
six alternatives 

The method of García-
Cascales
and Lamata (2012)

Fisher-Pry 0.519 0.419 
Growth curves 0.489 0.413 
Tech. trend analysis 0.443 0.402 
Patent analysis 0.435 0.397 
Monte Carlo models 0.385 0.393 
Analogy analysis 0.373 0.373 
Cross-impact analysis 0.335 
Scanning, monitoring, tracking 0.328 
Morphological matrices 0.323 
Delphi 0.314 
Relevance trees 0.309 
Scenario writing 0.287 
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the number of alternatives increase. In this case grouping the alter- 
natives under some criteria may be required. For further studies a
technique can be develope d for this grouping purpose.
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