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The following paper contributes to the methodology of innovation forecasting. The paper
analyzes the literature of engineering and technology management. A brief history and
justification for interest in engineering and technology management is presented. The field has
a sixty year history of interdisciplinary, and is therefore a ripe source for closer investigation
into time trends of knowledge. The paper reviews the literature of innovation forecasting,
examining a range of theoretical and methodological literatures interested in the evolution
of knowledge. A new application of a model, suitable for sparse and count-like publication
data, is presented. A mathematical presentation of the model is offered. A discussion is offered
on how the model may be implemented in an approachable way within spreadsheet software.
A time history of engineering management literature is extracted from a database and analyzed
using the model. A projection of keyword growth is offered, and key features of the emerging
knowledge base within engineering management are discussed. Recommendations for future
research, as well as for those monitoring the status of the discipline of engineering
management, are made.
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1. Introduction

In this paper we examine the evolution of knowledge in the field of engineering and technology management. The goal of this
survey is to assist journal editors, conference schedulers, and others involved in the building of the engineering management
community to better assess the current state of knowledge in the field. The presented technique aims at providing a way to rapidly
scan or monitor content areas of interest, highlighting if and in which direction further investigations are warranted. The aim of
this technique is not to retrieve or model content or to produce maps of science, but rather to trace the dynamics of areas of
interest over time. In addition to this practical concern, there are two intellectual reasons to be curious about the evolution of
knowledge in the field of engineering and technology management. The first stems from curiosity about engineering management
itself; a new and multidisciplinary field embodying a new perspective on the design, development and implementation of new
technologies. The second reason stems from a more general investigation into the dynamic and evolutionary character of
knowledge.

1.1. Motivation for the research

A brief sketch of engineeringmanagement follows; our goal is to chart the trajectory of the field andmake it further clear why it
is interesting to track the evolution of knowledge in this field. The years prior to the 1950s are known by some as the “Golden Age
of Engineering.” The scale, scope and success of “heavy engineering” projects provided the discipline with new levels of prestige.
nningham).
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Engineering systems analysis principles diffused to the government and military, which were interested in enhancing their
investments in capital outlays. Early analyses attempted to quantify engineering and technological performance with a wider
range of non-economic criteria. Also around this time there were early institutionalized attempts to foster collaboration between
the engineering and management disciplines; many of these efforts failed. Early multidisciplinary faculties, such as Carnegie
Mellon's “engineering and public policy department” were founded in the early 70s. A general enrichment of engineering
education was also pursued, for instance through the Accreditation Board for Engineering and Technology (ABET), around this
time. However, a backlash against systems thinking was also growing. Critiques both methodological and normative were
launched. Methodologically there were concerns about the lack of holism, as well as a concern about the capability of systems
analysis approaches in providing definitive advice for large scale societal problems. Normatively there were concerns that this
perspective operated against a peaceful and pluralistic society. By the 1980s engineering management was established as a
mainstream field of scientific publication. Although the field had been present in publication databases since the early 50s [3–6]
the late 80s saw an explosion in both numbers of publications as well as the variety of sources reporting on engineering
management.

Between the decade of the 80s and 90s, engineering management saw a more than five-fold increase in papers and sources, a
growth which had not been seen before or since. The 1990s and 2000s saw increasing specialization and professionalization of the
field with the founding of dedicated degree programs in management of engineering and technology

Table 1 illustrates the foregoing overview of the development of engineering management as reflected by publications and
journals. The table shows both the number of papers per decade, as well as the numbers of associated journals per decade. Also
listed is the number of publications associatedwith the single leading journal of that decade. Table 2 summarizes the timeline. As a
field, the management of engineering and technology is interesting because of its extensive history as well as its interdisciplinary
character. The fact that there were early, yet unsuccessful, attempts at institutional collaboration makes a closer examination of
the evolution and integration of engineering and management knowledge even more interesting.

Dynamic theories of knowledge generation are of intrinsic interest to a number of different fields of research. The theory of
dynamic capabilities is used by practitioners in strategic and technology management; these researchers are interested in how
firms acquire and broker knowledge for economic advantage [10,11]. This theory within the strategic management literature
draws upon evolutionary economic approaches [12]. The community of practice literature examines the technological and social
strategies adopted by networks of experts attempting to remain productive while dealing with rapid changes in knowledge [13].
The field of scientometrics attempts to create both static and dynamic measures of knowledge production. Previous scientometric
research into dynamic measures of knowledge production has examined a range of alternative measures including word usage
[14], citation usage [15,16], and patterns of collaboration [17]. Scientometricians often use a sociology of science perspective when
modeling the growth of knowledge [18]. This perspective, in turn, is strongly influenced by semiotics and linguistics [18,19].
2. The data

In this section we discuss the choice of data, and the query strategy. We review the time history of engineering management
publication. We discuss measures of content for this collection of articles, and the indexing methodology which is used to produce
tables for detailed analysis.

Routine scanning and monitoring activities for science and technology require an explicit focus on a smaller subset of science
and technology as a whole. In this case, the explicit focus is on the management of engineering and technology. The level focus
varies, but often five to ten thousand articles are a good subset. This specific focus is very different from national studies of science
and technology, where a substantial fraction of the science base must be investigated for performance or benchmarking purposes.
This specific focus is also very different from information retrieval applications, where by definition, the entire database is
designed to be efficiently indexed and retrieved.

The data is collected from the ISI Web of Science database, searching all topic fields using the terms:

“management of technology” or “technology management” or “management of engineering” or “engineering management”.

This query results in finding any one of the listed set of phrases present anywhere in the document. We do not limit publication
type to journals, and therefore include conference proceedings, editorials and reviews. The ISI database was selected because of its
Table 1
ISI publications in engineering and technology management.

Decade Papers Single leading source Journals

Before 1950 0 0 0
1950s 14 8 3
1960s 18 4 10
1970s 45 5 30
1980s 79 11 39
1990s 530 55 238
2000s 1182 37 N500



Table 2
Timeline of development in engineering management.

Decades Event

Before 1950 Golden age of engineering [1]
1950s Birth of systems analysis [2]; early engineering management publication [3–6]
1960s Development of systems management [2,7]; Early institutionalized attempts at multidisciplinary collaboration [8];
1970s Founding of early multidisciplinary faculties [8]; critiques of systems approaches [2,9]
1980s Engineering management as a mainstream field for scientific publication; inclusion of engineering management

indexing schemes; enrichment of engineering education
1990s Offering of specialized engineering management degrees; launching of engineering management conferences;

diffusion of ideas to industry
2000s Increasing professionalization and differentiation
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long indexing history, its familiarity to researchers in innovation policy research, and its broad sampling of relevant publication
outlets.

These words are selected based on a naïve semantic model of the field. The combination of “engineering management” and
“management of technology” into a single field with common interests is upheld bymany practitioners in the field, for instance by
the Portland International Conference of Management of Engineering and Technology (PICMET). Nonetheless, as will be shown,
there are subtle differences in the usage of these terms, which must nuance our interpretation of the findings. On the other hand,
the merit of the technique to be discussed is a quick and iterative scanning of databases of interest to highlight topics of interest.
Given the approach it is readily possible to grow, expand or otherwise evolve the query as new information comes to light.

This query results in 2580 documents. These documents span a seventy year (see Table 3). The earliest document in the
collection is a German language publication on technology and water management [20]. Other early contributions were from a
special issue of the Proceedings of the Institute of Radio Engineers [3,4,6]. This foresighted special issue examined the challenges of
management in the emerging electronics industry. (The Institute of Radio Engineers is an early precursor to the modern IEEE
organization.)

Deeper insights into the evolution of knowledge in this field are afforded by looking at content terms in the documents. Several
content measures are possible when using the ISI database. Words and phrases from titles and abstracts might be used. Subject
categories, which are inferred based upon the journal of publication, may be used. Author provided keywords might be used. ISI
also provides their own keywords which are harvested from the document according to an ISI-specific ontology.

For this research we use the author provided keywords, which have the advantage of providing a succinct, easily interpretable
measure of content for the document. The measure, although limited, might be supplemented in future by additional sources of
information. Author supplied keywordsmay not be the best choice for indexing and retrieval purposes. A richer source of semantic
information might instead be obtained by fully indexing the article abstracts. However this would undoubtedly reveal that
documents contain a semantic web of concepts, which over time and document collections is growing and changing dynamically.
For the purposes of this paper we focus more closely on the dynamics of individual terms and phrases as revealed by author
provided keywords. The primary threat to using author provided keywords is the fact that the authors may have an idiosyncratic
concept of content which does not reflect the field as a whole.

Another limitation of using author provided keywords is the fact that this searchable field was only included in the ISI database
for records from 1990 onward. Furthermore, not every author provides keywords to his or her documents. We do however have a
total of 9273 keywords with which to appraise the content of these articles: roughly four keywords per article.

Use of keywords varies subtly according to whether the article is self-identified as “engineering management” or “technology
management.” A chi-squared test performed on the expected and observed use of keywords in the collection results in a chi-
squared statistic of 11,851, with 9070 degrees of freedom. This result would be expected by chance in less than 5% of cases.

The observed occurrences of the top ten keywords across the three corpuses of engineering management, technology
management and management of technology are given in Table 4. The expected occurrence of these keywords, assuming that the
keywords are independently distributed of the corpus, is shown in Table 5. The principal differences in content lie with
engineeringmanagement, although to a lesser extent there are differences in content between the “technology management” and
“management of technology” corpuses.
Table 3
History of engineering management publication.

Decade Publications

1930s 1
1940s 3
1950s 16
1960s 43
1970s 75
1980s 143
1990s 850
2000s 1460 (incomplete)



Table 4
Observed occurrences of keywords.

Corpus (observed counts)

Phrase or query term Total occurrence Engineering management Technology management Management of technology

Engineering management 64 59 2 3
Technology management 292 4 268 20
Innovation 143 6 105 32
Project management 40 15 15 10
Performance 91 7 60 24
Engineering education 12 10 2 0
Technology 70 4 46 20
Software engineering management 8 8 0 0
Strategy 55 3 41 11
Information technology 43 1 31 11
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By inspecting the observed versus expected matrices it is possible to assign keywords to the corpus which emphasizes the
keyword more than is expected given statistical independence (Table 6). The engineering management corpus emphasizes
engineering, which is unsurprising. However it also emphasizes “project management.” The management of technology corpus
emphasizes technology, again unsurprising, but it also emphasizes “innovation,” “performance,” and “strategy.” Evidence of such
subtle differences alerts the analyst to the necessity of treating the source query with care.

In the following paragraphs we survey the leading key terms and phrases in order to get a general perspective of the field prior
to creating a dynamic model of keyword usage.We split the frequency of the keywords directly related to the query from the other
keywords for it is tautological to claim that the superset will grow faster than any of its subsets. For this same reason, we also
present the results of themethod for the keywords directly related to the query separate from the remainder of the keywords. This
is shown in Table 7. Note that there were no documents in the corpus which used multiple query-related keywords.

Table 8 shows the frequency of the keywords in the dataset. We choose the original query terms to tabulate over time, since as
demonstrated, differential growth in the query components can affect over-all content. In addition, we include the top thirty-three
words or phrases in the data set, resulting in thirty-five keywords for tabulation. This represents roughly 1 in 4 of the total
keywords.

In general, a given body of literature is constantly innovating new keywords, resulting in any fixed list growing rapidly out of
date. Thus, a catch-all keyword, representing all others not listed, is also included in the list. This is an important indicator of the
presence of content change. These keywords are presented by rank and frequency in Table 9.

The documents are tabulated across all years of the data using these thirty-five keywords and the catch-all phrase The resulting
table shows the dynamic evolution of keywords over time. The perl scripting languagewas used to produce the tables based on the
full downloaded ISI records.

3. Method

In this section we discuss features of the data, and note previous research involving the modeling publication counts. Previous
research includes trend extrapolation, population modeling, and linear dynamical models. Finally, the model itself is described.

3.1. Sparse and count-like characteristics of the data

The data is sparse and count-like in character. The average rate of keyword usage in any given year is 1.80. The probability of
any keyword–year combination being absent from the data is 55%. Particularly in the earlier years, the use of keywords was
infrequent. These stylized facts suggest the use of Poisson models for modeling the data.
Table 5
Expected occurrences of keywords.

Phrase or query term Engineering management Technology management Management of technology Partial chi-squared value

Engineering management 10.72533 37 15.93616 2332.443
Technology management 48.93433 170 72.70872 2010.613
Innovation 23.96441 83 35.60735 321.0601
Project management 6.703332 23 9.960099 69.04959
Performance 15.25008 53 22.65923 67.57893
Engineering education 2.011 7 2.98803 63.88617
Technology 11.73083 41 17.43017 59.41612
Software engineering management 1.340666 4.7 1.99202 44.3812
Strategy 9.217082 32 13.69514 38.43117
Information technology 7.206082 25 10.70711 38.34298



Table 6
Relative emphasis by corpus.

Phrase or query term Emphasis

Engineering management Engineering management
Project management Engineering management
Engineering education Engineering management
Software engineering management Engineering management
Technology management Technology management
Innovation Technology management
Performance Technology management
Technology Technology management
Strategy Technology management
Information technology Technology management
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Normal approximations to the data, even using continuity corrections, fail when rates are less than five [21]. There are concerns
with error-modeling, parsimony and predictive validity when using Gaussian models when these models are distributionally
inappropriate. Gaussian models over-weight high count and high variance years. As a result critical information at the start of new
publication trends is effectively discarded. Gaussian distributions, when used inappropriately, result in excess model parameters,
and therefore an inability to generalize models when new data is present. Gaussian noise, when added to model structure, may
result in negative predictions. Predictions of “negative” publication count are suspect both conceptually as well as validity-wise.

Unfortunately there are few existing Poisson models to be used as exemplars in the scientometrics, bibliometrics or
informetrics literatures. An exception is [22] where the authors model the distribution of papers by single authors as a Poisson
distribution, and the distribution of papers across authors as a gamma distribution. The authors present evidence in light of the
analysis of actual production data [23].

3.2. Innovation forecasting

An early effort to model and forecast publication and patent counts was provided by [24]. These authors model the early stages
of the innovation cycle using a broad spectrum of indicators andmethods. In particular the authors draw upon establishedmodels
of trend extrapolation, such as the Fisher–Pry model. Given the important role of these models in innovation forecasting, a closer
survey of these models is given next.

3.2.1. Trend Models
Trend models examine the adoption or diffusion of new technologies into the marketplace. These models are accompanied by

techniques for non-linear regression, allowing the structural models to be fit to real data. Estimates of future growth or diffusion
based on data are then possible. Thus, the principal character of these models is their use in modeling directly observed indicators
of growth and substitution.

Four major kinds of market models include the Fisher–Pry, Pearl, Gompertz and Bass models [25,26]. These models differ in
their postulated underlying non-linear processes of diffusion and saturation. The underlying process is often justified using
dynamic models of population growth.

For instance, the Bass model is intended to describe the first adoption of a new technology. The model assumes that there are
two key adoption processes. Some fraction of consumers will unconditionally adopt a new technology at a given period of time.
This fraction is known as the “coefficient of internal innovation.” Another fraction of consumers will adopt a new technology only if
their peers have adopted the technology. This fraction is known as the “coefficient of external innovation.” Together the internal
and external coefficients determine the ultimate speed and extent of technology adoption. Since the model describes the first
adoption only, once all prospective customers have adopted the technology predicted new adoptions then cease. The Bass model is
closely related to the Pearl and Fisher–Prymodels of technology adoption. The difference is that the Bass model predicts the rate of
new adoption, while the Pearl and Fisher–Pry models forecast the cumulative new adoptions.

3.2.2. Population dynamics
Population dynamic models are more fundamental in character than either innovation forecasting or market extrapolation

models. It is helpful however to examine the assumptions behind these models to better understand their use and applicability.
Table 7
Position of query related keywords among the leading keywords.

Rank Keyword Frequency

1 Technology management 292
7 Engineering management 64
11 Management of technology 46



Table 8
Leading keywords in the data.

Rank Word or Phrase Frequency in the Data

1 Technology management 292
2 Innovation 143
3 Management 92
4 Performance 91
5 Model 78
6 Technology 70
7 Engineering management 64
8 Strategy 55
9 Knowledge management 49
10 Systems 48
11 Management of technology 46
12 Information technology 43
15 (tied) Firms 42
15 (tied) Knowledge 42
15 (tied) Product development 42
16 Perspective 41
17 Project management 40
18 Firm 39
19 Industry 33
20 Framework 30
22 (tied) Competitive advantage 29
22 (tied) Design 29
25 (tied) Business 27
25 (tied) Technology strategy 27
25 (tied) Technology transfer 27
27 (tied) Impact 26
27 (tied) Networks 26
28 Strategies 25
29 Information 23
35 (tied) Capabilities 21
35 (tied) Evolution 21
35 (tied) Implementation 21
35 (tied) Quality 21
35 (tied) Strategic management 21

All others 7549
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The structural character of trend models implies a deterministic or stochastic dynamic at work. These models are written in terms
of differential equations, where the pattern of growth is modeled as an interaction between a positive feedback loop of growth,
and a negative feedback loop of saturation. Stochastic variants of these models are possible, where the positive feedback loop is
described as “growth,” and the negative feedback loop is described as “saturation” [27].

These models generate the structural forms associated with trend extrapolation models, including exponential and hyperbolic
growth. In addition, in their stochastic forms, they duplicate probabilistic processes such as the normal, gamma and beta
distribution. The basic character of these models involves explanation of future growth based on current, observed phenomenon.
This explanatory form allows a fairly deep explanation of how and why growth occurs in terms of population-level forces and
incentives [28]. Thus, similar surface level dynamics may arise despite fundamental differences in the underlying process itself.

3.2.3. Linear dynamical systems
The fundamental character of linear dynamical systems is an explanation of dynamic behavior based upon partially unobserved

characteristics of the system. The systemmay contain the presence of noise whichmay alter either the dynamic, or the observation
and measurement of the system. The Kalman filter is an efficient mechanism for estimating the parameters of a linear dynamic
system given data.

A data-oriented review of linear dynamic systems is provided by Roweis and Gharamani [29]. This review makes clear the
relationships between linear dynamic systems and other statistical models. Most interesting are the connections between linear
dynamic systems and factor analysis. Previous bibliometric work has attempted to model the evolution of semantic spaces of
Table 9
Model quality of fit.

No Description of model Parameters Log likelihood AIC

1 Constant rates 35 −3379 6964
2 Exponential 70 −1178 2496
3 Second-order exponential 105 −1130 2330



352 S.W. Cunningham, J. Kwakkel / Technological Forecasting & Social Change 78 (2011) 346–357
documents and concepts [14,19]. This work is challenged however by creating a common basis for comparing the evolution of the
system over time. Linear dynamical systems are the logical extension of science maps to consider dynamical phenomenon.

A basic description of the linear dynamical system is as follows [29]. The linear dynamical system is a discrete time dynamical
system with Gaussian noise. The system consists of an underlying state matrix x, which might be of any dimension. We withhold
indices on this state matrix without loss of generality. The matrix which describes the transition of this state over time is the
matrix A. The subscripts (0, 1, . . . t, t+1) describe the time evolution of this system. A source of Gaussian noise (wt) is added to the
system. We may specify this as a stationary Gaussian distribution with mean zero and covariance matrix Q, without any loss of
generality.

Eq. (1). The linear dynamical system

xt + 1 = Axt + wt = Axt + w0; w0∼N 0;Qð Þ
yt = Cxt + vt = Cxt + v0; v0∼N 0;Rð Þ

This hidden state vector is transformed into the observable state of the system through matrix C. Here too there is a source of
Gaussian noise (vt). This is a stationary Gaussian distribution with a mean zero and covariance matrix R. This equation is of
particular and interest in forecasting when the underlying state (x) is of much smaller dimensionality than the observed vector (y).
Thus complex dynamics are explained and anticipated with a relatively simple description of the system.
3.3. The model

Having reviewed innovation forecasting, trend extrapolation, population dynamics, and linear dynamical systems we can now
present the proposed model. This model combines ideas from each of these in pursuit of a model of publication. The innovation
forecasting perspective is valued because of its conceptualization of publication within a larger context of innovation. The trend
extrapolation perspective is useful because of its capability for non-linear modeling of observed phenomenon. The dynamical
systems perspective is useful because the potential for explaining the underlying dynamics in terms of population-level forces. The
introduction of stochastic elements is also useful here. The linear dynamical systems perspective is useful because it provides the
capability for modeling growth based on unobserved, underlying factors. As noted, previous scientometrics approaches have
attempted to model the dynamics of knowledge over time.

The model is described in Eq. (Eq. (2). Suppose that there are n keywords and t years in the data. Each keyword has the same
explanation dependent on parameters, and the keywords pattern over time is independent of one another conditioned on the
model. Thus, we may drop the index n from the equation without loss of generality.

Eq. (2). The generative model of the data

λt = exp a + bt + ct2
� �

yt = Pois λtð Þ

The mean rate of publication is an exponential function of time. There is a constant term (a), an exponential growth term (b),
and further we expect a higher-order term reflecting for instance the increasing difficulty of publishing in a mature and therefore
saturated field (c). The resulting dynamic equation of expected publication over time is a non-homogeneous differential equation.

This mean rate is then entered as a parameter in a Poisson random variable. Thus, any given realization of the process is
discrete, and subject to natural variation year over year. The exponential link in these equations is associated with Poissonmodels,
and guarantees that the domain of the function remains positive [30]. The Poisson is always associated with non-negative rates.

The model very closely approximates the Bass model. A small, fifth-order approximation is needed to make the two
formulations equivalent. In practice, the differences are very small, much smaller than the trend error itself. Eq. (Eq. 3) shows the
model; it entails regressing the current publication levels on the cumulative publication up to all previous years.

Eq. 3. A Bass-equivalent model

yt = a + b ∑
t−1

i=0
ytð Þ + c ∑

t−1

i=0
y2i
� �

Given the close approximation, it is therefore worth comparing the dynamics of the Bass model with a prospective model of
innovation in science. Like the Bass model, there may be a pool of prospective scientists able and willing to adopt new scientific
ideas. These ideas are partially and incompletely measured by keyword usage in scientific articles. A fraction of these scientists
may spontaneously experiment with new ideas. A separate fraction may emulate other scientists adopting new ideas only once
they are tried and proven by others. Unlike the Bass model, the underlying scientific population may be rapidly growing. Further,
the quantity of publication per year per scientist may also be increasing, if only because scientific research is becoming better
instrumented. Thus, the Bass model may be translated to create a rough, if ready approximation of the dynamics of scientific
publication.
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3.4. Implementation details

One way of estimating the linear dynamic system is to approach the problem as a matter of non-linear optimization. The
problem may then be solved using Frontline Solver, in the Excel package [31]. This approach is suitable for smaller problems, and
has the advantage of rapid prototyping, ease of access and accountability [32].

An overview of the spreadsheet layout is given in Fig.1. The model consists of the following elements:

− Objective function
− Decision variables (C, parameter values)
− Derived variables (X, logged rates)
− Parameters (A, dynamic structure)
− Expectations (λ, Poisson means)
− Actual data
− Penalty function (log likelihood)

4. Results

The first task is to evaluate of possible specifications consistent with the model described in the previous section. Two such
models are given (Table 9). The parameters of each of the models are given, as is the log likelihood of the best fitting model.
Increasing the dimensionality of the C matrix is more expensive in parameters than adding additional parameters to the state
matrix A. This is because the C matrix is sized proportional to the keywords (30 in this example), while the A matrix only adds a
new parameter or two.

The first, the null hypothesis, is a simple static model without changes in rates over time. The second model presumes that the
growth rates are exponential over time. The second-order exponential model tested involves a deceleration of growth over time.

As can be seen from Table 9, the proposed model provides the highest likelihood, and the most informative model as indicated
by Aikake's Information Criterion (AIC). A component of saturation appears to be an important explanation of the dynamic in this
data. The null hypothesis, a static usage of keywords, is handily rejected. Most of the lack of fit is contributed by the composite term
“all others”which contributes−195 units of log likelihood out of the total−1130. A closer look at the time trajectory of this poorly
fitting catch-all term is shown in Fig. 2. The quality of the fit appears adequate.

The dynamic model of Eq. (2) is suggested solely as a descriptive model of the data. As can be seen from the model results, the
resultant quality of fit is high despite relatively few required parameters of the model. We suggest that the model is suitable for
Fig. 1. Overview of the spreadsheet layout results.
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generalization over the short term; as here with twenty years of data, a four or five year outlook seems reasonable. Despite these
notes about model adequacy, a general theory of publication dynamics is still needed. Confronting theory and data would
undoubtedly enrich both endeavors.
Table 10
Projection of query related keyword usage.

Keywords 2010 (incomplete, actual) 2010 (projected) 2015 (projected)

Engineering management 5 11.5 27.8
Management of technology 1 2.2 0.2
Technology management 19 20.5 13.8

Table 11
Projection in keyword usage.

2010 (actual) 2010 (projected) 2015

Business 5 3.5 4.0
Capabilities 2 2.2 0.5
Competitive advantage 2 2.0 0.7
Design 2 3.0 2.2
Evolution 0 1.0 0.1
Firm or firms 8 9.6 11.7
Framework 5 6.4 14.4
Impact 4 3.6 5.1
Implementation 0 2.2 2.1
Industry 7 9.1 76.2
Information 2 1.7 0.7
Information technology 0 2.8 1.1
Innovation 4 13.2 10.0
Knowledge 5 7.4 10.3
Knowledge management 2 5.5 1.9
Management 6 9.8 9.5
Model 11 9.6 10.9
Networks 2 3.0 2.5
Performance 5 13.6 13.1
Perspective 4 7.0 24.7
Product development 0 2.7 0.8
Project management 3 6.4 13.6
Quality 2 3.1 4.8
Strategic management 3 2.6 5.5
Strategy or strategies 5 4.5 1.2
Systems 3 6.6 7.8
Technology 5 5.3 2.1
Technology strategy 1 1.0 0.4
Technology transfer 5 3.2 9.2

image of Fig.�2


Table 12
Query related keyword velocity and momentum.

Keyword Velocity Momentum

Engineering management 242% 27.79
Management of technology 9% 0.2
Technology management 67% 13.82
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Wenow project themodel forward using the best fittingmodel. This enables us to drawmore acute conclusions concerning the
current and future state of the field of engineering and technology management. Tables 10 and 11 show a projection to 2015,
alongside actual and projected 2010 data. As can be seen, there are some consequential shifts in the perceived content of these
papers. The most significant changes as represented by this projection include the rate of new keyword usage, and shifts in the
relative usage of “management of technology” and “technology management.” By 2015, an increase in 74% in the all others
category is seen, reflecting the continual change of the field. While usage of the words “technology management” and
“management of technology” has significantly declined, drops are replaced with corresponding increases in the use of the cognate
“engineeringmanagement.” The relative merits of one of these terms over the other remain unclear, but as was noted earlier there
are distinct interests and precommitments associated with each.

Tables 12 and 13 show two derivedmeasures of keyword growth: velocity andmomentum. Velocity is the comparative growth
(or decline) of keyword usage from year 2010 (as estimated) to 2015 in the model. Momentum is the growth rate multiplied by
the 2010 estimated rate of term usage. Both velocity and momentum are needed to assess the significance of keyword usage.
Velocity pinpoints words showing significant growth of keywords, while momentum shows those fast growing keywords that
have reached a significant level of adoption.

A simple 2×2 framework affords a monitoring scheme for further decomposing categories of growth by keywords
(Table 14). Low growth and low momentum represents specialized concepts used by relatively few authors. High growth but
low momentum represents a source of emerging concepts. High momentum but low velocity represents a stable of core
concepts in the field. Both high growth and high momentum keywords represent the most significant source of growth in the
field.

The framework given in Table 14 is applied by finding a breakpoint in velocity and momentum, and placing keywords in the
corresponding four categories according to their growth characteristics. The resultant portfolio allows us to categorize the
keywords appropriately. Note the strong correlation between velocity and momentum. Despite this, simple analytic procedures
can be used to find breakpoints for velocity and momentum.
Table 13
Keyword velocity and momentum.

Velocity Momentum

Business 114.6% 4.01
Capabilities 24.2% 0.54
Competitive advantage 34.5% 0.68
Design 72.6% 2.19
Evolution 9.4% 0.10
Firm or firms 122.6% 11.75
Framework 227.2% 14.43
Impact 140.5% 5.05
Implementation 98.1% 2.14
Industry 836.7% 76.18
Information 39.7% 0.69
Information technology 38.6% 1.07
Innovation 76.2% 10.04
Knowledge 138.7% 10.33
Knowledge management 33.9% 1.85
Management 96.9% 9.50
Model 113.5% 10.86
Networks 81.5% 2.46
Performance 96.9% 13.14
Perspective 350.9% 24.66
Product development 31.6% 0.84
Project management 210.7% 13.57
Quality 153.5% 4.79
Strategic management 213.0% 5.45
Strategy or strategies 26.6% 120.3%
Systems 117.9% 783.8%
Technology 40.0% 210.1%
Technology strategy 38.5% 37.2%
Technology transfer 287.9% 924.5%



Table 14
2×2 framework for monitoring keyword usage.

Momentum

Low High

Velocity High Emerging concepts Growth concepts
Low Specialized concepts Core concepts
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Table 15 shows the resulting portfolio. This portfolio is likely to change over time. The underlying dynamics of the model
suggest a variable rate of velocity over time. Furthermore, the dynamics implied by the model suggest a variable relationship
between velocity and momentum as well.

5. Closing remarks

The results suggest that technology and engineering management is growing more applied. Attention to business, firms and
industries is increasingly more prevalent. Project management is on the rise as a topic for research. Likewise, implementation and
quality are increasing in prominence in the literature.

The task of innovation forecasting presentsmultiple challenges. One challenge entails treatment of the unique characteristics of
publication count data. Another entails the need for constant scanning of new and emerging terms from the domain of low
frequency keywords. This paper presented a mathematical model for use in innovation forecasting. The presented model aims at
providing a way to rapidly scan or monitor content areas of interest. The model allows effective treatment of Poisson distributed
data. Furthermore, when coupled with indexing software and spreadsheet modeling affords a relatively rapid technique for
keeping atop new and emerging concepts within a literature base. We suggest that the model and implementation provide useful
desktop monitoring procedures for continuous monitoring of emerging fields of new technology.

The technique is illustrated by focusing on a particular subset of science and technology as a whole — in this case the fields of
engineering and technology management. Term growth in that field is naturally limited by the query itself — no term within the
set engineering and technology management can grow faster than the collection as a whole. In this paper then, we examine the
internal growth of a key term relative to the field as a whole. Nonetheless, it may be helpful for some applications to examine the
external growth of the term. A growth perspective from within the query, as well as from science and technology as a whole, can
be helpful.

Further exploration of keywords beyond the top thirty is needed. Of the thirteen terms identified as high growth concepts, nine
were from the second decade of ranked keywords. Undoubtedly even more significant keywords from the third decade and below
are likely to emerge.

It is worth comparing the dynamics of the Bass model [26] with this prospective model of innovation dynamics in science. In
the Bassmodel, theremay be a pool of prospective scientists able andwilling to adopt new scientific ideas. These ideas are partially
and incompletely measured by keyword usage in scientific articles. A fraction of these scientists may spontaneously experiment
with new ideas. A separate fraction may emulate other scientists adopting new ideas only once they are tried and proven by
Table 15
Portfolio of leading keywords.

Emerging concepts Growth concepts

Business Engineering management
Framework Firm or firms
Impact Knowledge
Implementation Management
Industry Model
Perspective Performance
Quality Project management
Strategic management systems
Technology transfer

Specialized concepts Core concepts

Capabilities Innovation
Competitive advantage Knowledge management
Design Management of technology
Evolution Strategy or strategies
Information Technology
Information technology Technology management
Networks
Product development
Technology strategy
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others. However, unlike the Bass model, the underlying scientific population may itself be rapidly growing. (Bass himself notes
that themarket potential may be slowly changing over time.) Further, the quantity of publication per year per scientist may also be
increasing, if only because scientific research is becoming better instrumented. Thus, the Bass model may be translated to create a
rough, if ready approximation of the dynamics of scientific publication.

Furthermore, a more complete investigation of the construct validity of keywords is needed. Previous research has suggested
that words and phrases within titles and abstracts provide a model of content which may be generalized across researchers
[33,34]. While such a framework would not obviate the need for keywords, additional confidence in their use and significance
could be achieved. Additional work on joint models of both semantics as well as temporal dynamics, for the purposes of innovation
monitoring and scanning, is also needed.
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