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Investing in R&D for a product employing new technologies is a challenging issue for companies
and governments alike, especially at the critical juncture of deciding the degree of resource
allocation, if any. Decision-makers generally rely either on historical data or intuitive prediction to
gauge the rate of improvement and level of R&D spending to achieve the desired improvement.
This paper introduces a systematic way of forecasting the endogenous progress potential of a
product based on the complexity of its knowledge structure. The knowledge structure represents
knowledge associatedwith the product's core technology and the configuration of the components
and sub-systems supporting the core technology. Topological properties of complex networks are
applied to assess the knowledge complexity of a product relative to its class. Analyses of the
complexity of knowledge structures for a set of energy harvesting devices confirm that node degree
and clustering coefficient provide distinguishing topological properties whereas community size
and membership number do not clearly differentiate the knowledge structure complexity. We
discuss the implications of these findings on forecasting progress potential.
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1. Introduction

A central concern in R&D investment in product innova-
tions employing new or untested technology is the necessary
level of resource allocation to grow the stock of knowledge
[1,2]. A model of the intrinsic improvability of a product
would allow decision makers to forecast a product's endog-
enous rate of improvement, or progress potential, which
would inform their decisions on the appropriate level of
research budget and the time span for the stock of knowledge
to accumulate [3]. Similarly, companies or governments
aiming to allocate investments across a number of potential
product innovations, all of which appear attractive, may
prefer to invest in those that have a higher likelihood of faster
ong),
progress. We contrast this problem of forecasting the
endogenous progress potential of a product based on its
intrinsic improvability with forecasting the diffusion of
product innovation [4,5], which generally focuses on exoge-
nous, market-driven factors, or forecasting the general
growth of knowledge about technologies through environ-
mental scanning, for which bibliometrics and Delphi have
played a key role [6,7].

The extent to which a product and its core technology
respond to investment and improve has been quantified by
progress functions [8] and ‘learning curves’ or ‘experience
curves’. Progress functions measure the result of companies
gaining experience and making improvements to production,
which is assessed by data on cumulative volume of production
and unit cost. Despite subtle differences in the definition of
progress functions and learning curves or experience curves
[8], they all rest on the same principle: the cost of production
decreases as individuals, companies, or industries ‘learn by
doing’. The precise nature of the relation between the inherent
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difficulty in ‘learning by doing’ posed by a specific technology
and cumulative volume of production is not yet fully under-
stood, though. In the energy sector, for example, experience
curves only weakly explain the change in cumulative volume of
production, with the endogenous factor of technical barriers
beingmore significant [9]. Two other causal factors downplayed
in progress functions are the intrinsic degree of difficulty in
‘learning’ about a technology at a component level and the
degree of architectural complexity in configuring parts and
sub-systems around the technology into a commercial product.
Understanding how the intrinsic complexities in the design and
underlying technology of a product affect growing the stock of
knowledge, and hence the progress potential of a product,
would be a powerful tool for investors and policy-makers to
forecast the progress potential of new products at the early
stages of technological development.

To address this question, we bring engineering design to
the problem of forecasting technological improvement by
exploring a seldom-cited link, which is the knowledge that is
embodied in the design of a product. When we mean design,
we refer to both the componentry of the core technologies
and the configuration of the parts and sub-systems of a
product, that is, the product architecture. Significant knowl-
edge is embodied in the components of the product and in
the way that they fit together. One way in which a number of
academic studies have connected technological improve-
ment and design is through the modularity of product
architecture. A highly modular product architecture has
been shown to decrease the time to design the product
[10], support end-user innovation [11], and facilitate the
establishment of product platforms and families [12,13]
among other benefits that increase the rate of innovation
[14]. Architectural modularity turns out to be an important
way to link the design of a product to its progress potential.
McNerney et al. [15] developed an intriguing model showing
that the progress potential of a product is driven by a power
law with exponent b = 1 / (γd*), where γ is the intrinsic
difficulty of finding a better component and d* is the
maximum design complexity of the product. The maximum
design complexity of the product is determined by the
component that has the most influence on other compo-
nents, such that it is not possible to alter that component
without simultaneously altering the other dependent com-
ponents. Through simulation on synthetic data, they showed
a correspondence between their model and reported rates of
progress.

A notable caveat to this perspective is the work by
Henderson and Clark [16], who studied the relationships
between architectural knowledge as embodied in the prod-
uct architecture and the capability of companies to imple-
ment architectural innovation. They showed that simply
modularizing the physical architecture of a product does not
then mean that knowledge underlying the product has also
been modularized. Brusoni and Prencipe [17] emphasize the
point “that product modularization does not derive from, nor
bring about, knowledge modularization”. When there is a
correspondence between architectural and knowledge mod-
ularity, Ethiraj et al. [18] showed that an increase in physical
product modularity decreased the cognitive complexity of
the product, leading to easier and quicker imitation by
competitors. In essence, they point toward the main thrust of
this article: the complexity of the knowledge structure
underlying a product influences the dynamics of progress.
The questions are, how complex and complex relative towhat?

Modeling progress according to architectural modularity
alone downplays the inherent difficulty in producing new
knowledge relevant to the product and the knowledge
dependencies between interacting components and systems.
When it comes to product innovation, knowledge is both a
requisite of innovation and a barrier to innovation. It is a
barrier to innovation because the process of acquiring and
transforming knowledge input into innovation output is
costly and requires coordination. Previously, scholars have
examined the problem of the complexity of the coordination
in relation to the complexity of the task structure [19,20] or
product architecture [21]. Much less is known, though, how
the complexity of the knowledge structure may affect the
cost of transforming the knowledge into an innovation, with
the exception of the study by Dollinger [22], who demon-
strated that increasing complexity of information requires
more boundary spanning across knowledge domains by
individuals so as to produce cohesive strategic plans.

We thus make one important correction and contribution
to studies aiming to forecast the progress potential of
products: the fundamental factor in the progress potential
of a product is not the complexity of the product architecture,
but rather the complexity of the underlying knowledge
structure for the product. Our main hypothesis is that
progress potential is bounded by the degree of complexity
(or simplicity) of the underlying knowledge structure of a
product, which represents both knowledge associated with
the product's core technology and the configuration of
the parts and sub-systems around the core technology to
produce a commercially viable product. The challenge lays in
understanding the differentials in underlying knowledge
structures for products. Which characteristics of knowledge
structures distinguish the complexity of products and how
can the complexity of product knowledge structures be
assessed to ascertain progress potential?

This paper explores the hypothesis that a relationship
exists between product knowledge structure and the product's
progress potential. We describe an approach based on
complex network theory and tensor analysis. The complexity
of the knowledge structure for a product is compared to
products within its class in a form of outside-view reference
class forecasting [23]. We present three hypotheses to test
which topological properties distinguish the complexity of
products and examine these topological properties for a set of
products. Our first hypothesis tests the degree of connectivity
between knowledge elements associated with a product. The
second hypothesis tests the relative sizes of modules of
knowledge elements. The third hypothesis tests the links
between knowledge elements to elements outside of its
knowledge module. Each of the hypotheses is based on a set
of arguments relating to challenges associated with producing
new stock of knowledge as the knowledge structure complex-
ity increases. We illustrate our approach on a set of energy
conversion devices employing various core technologies
including piezoelectric, wind, wave, and solar to find evidence
to support our principle hypothesis that a relationship exists
between the complexity of product knowledge structures and
the rate of progress.



601A. Dong, S. Sarkar / Technological Forecasting & Social Change 90 (2015) 599–610
We find that the topological properties of node degree
and clustering coefficient distinguish the knowledge struc-
ture complexity of products, whereas there is insufficient
difference in community sizes and community degree. That
is, there is support for the first hypothesis but insufficient
support for the second and third hypotheses in our data set.
We find that piezoelectric technologies have product knowl-
edge structures with the lowest node degree and clustering
coefficient. The similarity in knowledge structure complexity
based on node degree and clustering coefficient for wind and
solar energy harvester devices follows the observed learning
rates for wind power and solar photovoltaic panels [24]. This
correspondence and the statistically significant difference in
node degree and clustering coefficient between products
employing piezoelectric technologies and other products
lead us to conjecture that piezoelectric-based energy har-
vesting products will likely progress the fastest. Wind and
solar products will progress at approximately the same rates
and slower than piezoelectric. Hybrid technologies combin-
ing wind and solar will progress the slowest.

2. Forecasting method

2.1. Knowledge representation

In this section, we develop a means to model the
knowledge underlying a product. In the field of engineering
design, one of the most accepted methods for modeling a
product in a component and architecture independent
manner is from the perspective of the product's function, in
other words, what it is intended to do. Conceptualizing a
product in terms of its intended functions is considered a
knowledge-oriented view of engineering design. Functional
representations of products include the Function–Behavior–
Structure (FBS) ontology [25], the design matrix [26], and
functional modeling [27,28]. In this paper, we will utilize the
functional model because of its ontological rigor. A functional
model identifies the intended purpose behind a product,
typically using a standardized and economical (exhaustive
but mutually exclusive) set of function-related terminology
such as the functional basis [28]. More formally, function is
the operation on a flow, or the manner in which an input is
transformed into an output [29], as depicted in Fig. 1 for a
piezoelectric component (adapted from [30]).

The functional modeling approach provides ‘structural’
data about the knowledge underlying a product, because the
functions (e.g., convert, transmit) describe the intended reason
behind the existence of the product, and the flows (e.g., human
energy, mechanical energy, electrical energy) connect the
functions to produce the full set of functional requirements
for the product [31]. Further, because a functional model can
rely on a controlled vocabulary (ontology) of function and flow
Fig. 1. Functional model of a p
with the functional basis [28], it describes product knowledge
in an objective and uniform manner.

The functional model lends itself to mathematical repre-
sentation in matrix form since all that is required to produce
the knowledge representation is to answer the question:
Does a product implement a given function on a given flow?
If the answer to this question is ‘Yes’, then it can be said that a
product contains a flow that is operated on by a number of
functions. Matrix A in Eq. (1) models the structure of the
knowledge about the product because it provides a mapping
between m functions and n flows, where ai,j = 1 if function i
operates on flow j and 0 otherwise.

A
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a2;1 a2;2 ⋯ a2;n
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Alternatively, we can represent matrix A as a bi-partite
network G. Each type-1 node in G is a function and each
type-2 node is a flow. A homomorphism exists between the
representation of G and matrix A. Matrix A is an adjacency
matrix of network G:

Aij ¼ 0 if an edge exists between nodes i and j
1 otherwise

:

�
ð2Þ

A typical functional model will contain a variety of
functions, possibly repeated, operating on a set of flows. If
functional models represent a set of products achieving a
similar primary function, such as generating electricity, then
the set of knowledge structures becomes a reference class
against which the complexity of a specific knowledge structure
can be compared. In the next section, we turn to the details of
making this relative comparison of knowledge complexity.

2.2. Quantifying the complexity of the knowledge structure

To motivate our approach to quantify the complexity of
the knowledge structure, we consider the issue of indepen-
dence and dependence in the knowledge structure, along
with two associated boundary conditions. At one boundary
condition lies a truly decoupled design. Matrix A is fully
diagonal with network G containing independent pairs of a
single type-1 node connected to exactly one type-2 node.
Each function operates on exactly one flow. Modularity exists
in a perfect form in this matrix, as modular functions do not
affect other functions and flows. In a perfectly modular
knowledge structure, what is known about one aspect of a
design neither affects nor influences knowledge about
another aspect of the design. For example, to know how the
LCD screen of a cell phone works, I do not also need to know
iezoelectric component.
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how the Li-ion battery works, except for its power output,
and knowledge of these two aspects of the cell phone is
essentially independent. At the other boundary condition lies
a truly coupled design. That is, matrix A is fully filled, with
network G containing all type-1 nodes connected to all other
type-2 nodes. Each function operates on all flows, which in
turn affects all other functions. Modularity does not exist at
all in this matrix; no function can be altered without affecting
any other function or flow.

In general, matrix A is neither perfectly diagonal nor fully
filled because the knowledge structure for a product involves
a complex set of interactions between the functions and
flows. Returning to the example of the cell phone, knowledge
about a touch screen requires knowledge of both capacitive
sensing and liquid crystal display technology. Algebraic
properties of matrix A or equivalently the topological
properties of network G can characterize the degree of
complex coupling in the knowledge structure.

The field of complex networks has developed a number of
techniques and metrics to characterize the complexity of
networks in terms of their topological properties [32]. The
specific topological property of interest is the modular
organization of the complex network including the number
of modules, the number of levels of hierarchical organization,
and node properties at the various levels of modular
organization of the network. In Section 3, we will explain
the relevance of modularity in the knowledge structure
to progress potential. We first explain how we identify
modularity in the knowledge structures.

A module is a tightly clustered or interacting subset of
nodes in the network that has much sparser interaction with
the rest of the network. By definition, a module has more
intra-module edges than inter-module edges. If there is
modular organization in the network, many nodes in
modules will have common neighbors. This will result in
many columns in the adjacency matrix of the network having
the same or similar entries, resulting in redundancy of
information. Thus, the number of modules will always be
much lower than the rank of matrix A. In contrast, if there is
no modular organization in the network, e.g., there is perfect
independence in the adjacency matrix, then the number of
modules will be exactly the rank of matrix A. If there are
modules, what this means is that there is mathematical
redundancy in the adjacency matrix, because there are
linearly dependent rows or columns, and a lower dimen-
sional basis for those vectors exists.

In previous work, we have proven that the Eigenvalue or
Singular Value Decomposition (EVD/SVD) provides an effi-
cient way to detect the modular organization and levels of
hierarchical modular organization of complex networks by
analyzing the eigenvalue/singular value spectra of their
adjacency matrices [33,34]. We summarize the key findings
herein. The eigenvalue (for networks having a single type of
node) or singular value (for networks having two types of
nodes) spectra provide sufficient information both to identify
the optimal number of modules in the network and to
identify which nodes belong to which modules, including
their possible overlap into multiple modules. First, the
eigenvalue/singular value spectra correspond to the modu-
larity structure of the network. The number of largest
eigenvalues/singular values well separated from the tail of
the trailing ones exactly describes the optimal number of
modules in the network. If the network has a hierarchical
modular organization, the largest singular values have a
stepped pattern of decrease, i.e., clusters of similar singular
values followed by a large gap followed by another such
cluster, and so on. The number of such gaps describes the
number of hierarchical levels and the number of singular
values of similar magnitude at each step describes the
number of modules within that level. Second, a least squares
approximation of the network's adjacency matrix generated
by truncating the eigenvalue/singular value matrix and their
associated eigenvectors at the optimal degree of modularity k
has the net effect of translating positions of nodes into a
continuous real-valued space where previously the positions
of nodes were in a binary space. By clustering nodes in space
using a simple algorithm such as k-means clustering with a
distance-based metric, the modules in the network can be
readily identified. One other important consequence of the
least squares approximation is that nodes that were previ-
ously modeled as not having an edge relation, or conversely
nodes that weremodeled as having an edge relation, may have
their edge relations strengthened (i.e., Aij = 0 ⇒ Aij N 0) or
weakened depending upon the statistical pattern of edge
relations across the entire network. The strengthening or
weakening of edge relations reveals additional or decreased
latent complexity that was previously unaccounted for in the
original network model. This is an essential outcome for
assessing the actual complexity of networks (knowledge
structures).

To make the relative comparisons of knowledge com-
plexity, we must take one more analytical step. Up to this
point, we have been discussing the knowledge structure for
products based upon single, independent network represen-
tations. Topological signatures of complexity for each knowl-
edge structure without reference to a class would not provide
us meaningful information, however. In other words, we still
need an answer to the question of complexity relative to
what. Our approach is to compare the knowledge structure of
a product to a reference class. To perform this comparison,
we draw upon the main pillars of reference class forecasting
[35] and outside-view similarity-based forecasting [23,36],
which are: 1) to generate forecasts from an unbiased class of
similar projects; and 2) draw on statistical relations between
the target and the reference class. Based upon these
principles, we combine the knowledge structure for a set of
similar products, where similarity is determined by the
primary function of the product rather than the technology
employed by the product, into a single knowledge structure
consisting of all of the products. The ‘stacked’ functional
models result in a tensor representation of order 3:
product × function × flow. A tensor is a matrix with dimen-
sionality greater than 2. Consistent with accepted notation,
tensors will be represented with boldface Euler capitals, e.g.,
A. Tensor A is a knowledge representation for a class of
products. By embedding the knowledge structure for a
product into a tensor representation for the knowledge
structure of the class, we can compute the statistical pattern
of cross-relations (i.e., similarities) of knowledge shared by
all of the products in the class using the Higher-Order
Singular Value Decomposition (HOSVD) tensor decomposi-
tion. The HOSVD is a generalization of the singular value
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decomposition [37]. The HOSVD decomposes a tensor A into a
core tensor C (equivalent to the matrix of singular values S)
and a set of matrices B (equivalent to the left and right
singular vectors U and V) along each mode of A. Computing
the HOSVD of an order N tensor is equivalent to the
computation of N different matrix SVDs, one for each
n-mode matrix unfolding of the tensor A [37]. The conse-
quence of this homomorphism between SVD and HOSVD is
that concepts about identifying the modularity of complex
networks apply equivalently to networks described as
two-dimensional matrices and order N tensors. Findings on
the number of modules and levels of organization apply to
the singular value spectra of tensors due to the homomor-
phism of SVD and HOSVD. The significance of this general-
ization is that we thus have a unified method to characterize
both the degree of modularity (how many modules) and
hierarchical modularity (how many modules at different
levels of organization of the knowledge structure) in
multi-dimensional knowledge structures.

The HOSVD, like the SVD, changes the values of the cells in
the tensor depending upon their original statistical pattern of
cross-relations when the tensor is re-represented in a
truncated lower-dimensional space. If the knowledge struc-
ture for a product is similar to the class, then the values in the
cells (their node positions in a continuous real-valued 3D
space) of the ‘slice’ of the tensor representing the product
will become similar in value to the values for the class during
the tensor decomposition process. Changes to values in
the tensor following the HOSVD decomposition have the
effect of altering the topological properties of the network
representing the knowledge for the product so that it is more
similar to the topological properties of the class. The same
effects happen in reverse. As the knowledge structure for the
product differs from the class, the values in the cells of the
‘slice’ of the tensor diverge from the class. The consequence is
that the topological properties of the network representing
the knowledge for the product also diverge from the class. In
short, by combining the knowledge structures into a single
tensor, and then computing the HOSVD of the tensor, we can
compare knowledge structures of products relative to their
class in a single computation.

The only remaining step is to derive hypotheses linking
topological properties of a network representing a knowl-
edge structure and its complexity to progress potential. We
develop these hypotheses in the next section.

3. Hypotheses on complexity and progress potential

If the essence of innovation is the production and integra-
tion of knowledge in a new way, these knowledge-oriented
activities will entail a cost influenced by the complexity of the
knowledge structure. Topological properties associated with
themodular organization of complex networks are proposed to
explain the influence of the complexity of knowledge structure
on progress potential. We propose three hypotheses based on
the complex network topological properties of node degree,
clustering coefficient, community size, and node overlap in the
knowledge structure of products.

Hypothesis 1. Progress potential increases as the node
degree decreases and as clustering coefficient decreases.
A complex network consists of components that interact
and that are interdependent to some degree. The degree of
decomposability of the network into modules that have weak
interactions between them but strong interactions within
them [38] is partially determined by the degree of intercon-
nectedness of the nodes. At one extreme is a fully connected
complex network, in which every node is connected by an
edge to every other node; this network is not decomposable,
and there is only a single community. At the other extreme
are fully independent nodes. Knowledge structures that are
decomposable intomodules can enable the creation ofmodular
organizational units to handle the associated knowledge
creation activities [39]. The complex network features of
Node Degree (ND) and Clustering Coefficient (CC) capture
this degree of interconnectedness of nodes. In a knowledge
structure, each edge represents a dependency between
knowledge (nodes). The ND is the number of edges (links)
per node and is one of the most fundamental features of a
complex network, as illustrated in Fig. 2. The CC measures the
probability that two nodes connected to some other node are
themselves connected; that is, the CC measures the density of
knowledge clusters in terms of the number of actual “triangles”
compared to the number that is theoretically possible. High
values of CC indicate that there are dense knowledge
dependencies in the knowledge structure.

Hypothesis 2. Progress potential increases as the module
sizes approach equilibrium.

The module size is the number of nodes in a module, as
illustrated in Fig. 3. If a given knowledge structure partitions
into a few large modules and then many small ones as
opposed to modules of approximately the same size
(equilibrium), this means that there is an imbalance in the
type and amount of knowledge located within these
modules. This imbalance introduces a coordination problem
for companies in knowledge sharing and transfer. The
difference in type and amount of domain-specific knowl-
edge within each module increases the effort to share the
knowledge [40]. Knowledge sharing activities require more
effort from the smaller knowledge community because it
takes more time for the smaller community to absorb
knowledge transmitted by the larger community [41]. This
view leads us to hypothesize that products having knowl-
edge structures containing disproportionately sized mod-
ules will progress more slowly than products having
knowledge structures containing similarly sized modules.
We measure this imbalance through the complex network
feature of community degree. The community degree is the
probability pk of finding a module with size k in the knowledge
structure. A cumulative distribution plot of the community
degree would identify the extent to which modules have a
similar size. A convex shapemeans that there are a fewmodules
of large size whereas a concave shape means that there are
many modules of similar size.

Hypothesis 3. Progress potential increases as the number of
modules with which a node shares an edge decreases.

Organizational boundaries of companies are often based
upon around distinct units of knowledge and expertise [42],
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Fig. 2. Node degree. The node having no fill in (a) has the highest node
degree of 3 whereas the other nodes have a node degree of 1 or 2. All nodes
in (b) have the same node degree, 2.
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that is, the knowledge required to deliver a product. These
organizational units produce specialized knowledge, and,
moreover, produce specific framings of their knowledge as a
means for solving the innovation problem [43]. In order to
transfer knowledge between organizational units, the strength
of ties, network cohesion, and network range of the organiza-
tion must be increased [44]. In a knowledge-sharing network,
the number of edges that connect a node (i.e., an individual) to
othermodules (i.e., another organizational unit) represents the
degree of knowledge transfer. However, in a product knowl-
edge structure, the situation is reversed. The more edges that
connect a node to other modules, the more knowledge sharing
that is required across communities regardless of the organi-
zation having the characteristics or knowledge transfer
mechanisms to facilitate the knowledge sharing and creation
across boundaries [45]. In a product knowledge structure, as
the number of edges with which a node shares with other
modules increases, so do the requirements for knowledge
transfer and sharing [40]. This creates a context wherein
knowledge creation across boundaries is more challenging,
and, therefore, the progress potential is likely to decrease.

Typically, a node is said to be overlapping a module if it can
belong in multiple communities [46]. Jun et al. [47] propose
that a node could be considered as overlapping multiple
modules if it shares edges between two non-overlapping
Fig. 3. Module size and membership number. This figure shows three
modules having an imbalance in sizes, and six boundary nodes (no fill)
nodes within a module that share edges with nodes in other modules.

Table 1
Sample data for energy harvesting devices. E = energy; ME = mechanical
energy; rot = rotational; trans = translational. A value of 1 in a table cell
means that, e.g., the product Wing Wave Generator can “import” “rotational
mechanical energy” and then “transfer” the “rotational mechanical energy”.

Product Import Transfer

Human
E

Rot
ME

Trans
ME

Human
E

Rot
ME

Trans
ME

Perpetuum 0 0 0 0 0 0
Nova Energy Turbine 0 1 1 0 1 1
Wing Wave Generator 0 1 0 0 1 0
Micropelt STM-PEM 0 0 0 0 0 0
,

modules, in which case it is considered a boundary node, as
shown in Fig. 3. We apply the definition by Jun et al. [47] as it
provides a less conservative definition of overlap than that of
Palla et al. [46].Wedefine themembership number of a node as
the number of edges from a node within a module to other
nodes in other modules. We can again plot the cumulative
distribution function of membership number as the probability
pk of finding a node with membership number k to illustrate
the extent to which nodes in the knowledge structure contain
edges to nodes outside of their respective modules.
4. Results of analysis of energy harvesting devices

In these empirical experiments, we study the complexity
of the knowledge structure of a data set of energy harvesting
products provided by Weaver et al. [30]. We studied an
externally developed data set so as to minimize selection bias
by the researchers. Weaver et al. [30] produced this data set
to investigate the innovation potential of these products,
specifically, how ‘concepts’ from one product might be
incorporated into other products. Originally, the functional
models were represented in a two-dimensional matrix
with the rows being products (i = 39) and the columns
representing both function (k = 21) and flow (j = 16).
Their two-dimensional matrix is a tabular representation of
a functional model as shown in Fig. 1. This representation
was converted into a three-dimensional (order-3) tensor A
by ‘stacking’ the functional models, where A1 is product, A2 is
flow and A3 is function. The value Aijk = 1 if product i uses
flow j in function k. Some sample data is shown in Table 1.

Second, we identified the modular organization of the
tensor as the number of modules and number of levels of
hierarchical modular organization in the tensor. The levels of
hierarchy are determined by the singular value indices at
which a large gap exists in the values between the kth and
kth + 1 singular values [34]. This step change is calculated as

ε ¼ ki−kiþ1

ki
. For the analyses shown in this paper, we set ε =

0.01, but the conclusions are robust for values of ε between
0.01 and 0.05. However, we note here that optimal or robust
values of ε will, in general, result from the data itself. If there
is a very pronounced community structure or hierarchical
community structure, the gaps between singular values will
be very pronounced, and ε will be higher. For example, a
network with 4 communities of 16 nodes each, with all 16
nodes of a single community fully connected to each other,
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but to no other community, will show the highest ε = 1. If
there is a weak community structure or hierarchical com-
munity structure, the gaps between the singular values will
be smaller and the whole spectrum will be smoother,
resulting in lower ε values. In our data set, we identified 5
levels of hierarchy and corresponding sets of singular value
indices, or k-indices, representing the number of modules
at each level of hierarchy along each of the 3 tensor modes:
(7, 3, 4); (11, 8, 8); (13, 11, 11); (13, 13, 14); and, (13, 13,
16). Using these k-indices as levels of modular organization
of the tensor, we compare the complexity of the knowledge
structure of individual products to the class.

We begin by performing a test of internal validity. Given the
data set, we expect that similar types of products would appear
in the samemodule alongmode-1 (the productmode). That is,
all the products grouped by Weaver et al. [30] as thermal
products should appear in the same module. Indeed, a
comparison of the modules in mode-1 with the classification
by Weaver et al. [30] shows a high-degree of correspondence.
Table 2 shows the accuracy (the fraction of products that
should appear in the module) and precision (the fraction of
products in a cluster that are relevant) of the clustering of
products into modules along mode-1. In the results shown in
Table 2, the original categories of inductive and piezoelectric
vibration were combined and the categories of wind, solar and
hybrid were combined before making the accuracy and
precision calculations. The rationale behind combining some
of the categories is that piezoelectric products are found in both
the inductive and piezoelectric vibration categories, and the
products in the hybrid category combine both wind and solar
technologies, so they are equally similar to products in the
wind or solar categories alone. Accuracy and precision levels
above 80%, generally regarded as thresholds for automated
clustering, show that themethod is able to cluster the products
into appropriate communities of products sharing similar
modes of input for energy harvesting and technologies for
converting the energy.

We now turn our attention to the comparison of the
topological properties of each individual product to the class.
For each product, which is represented by a ‘horizontal’ slice
of the tensor, we calculated the metrics associated with each
of the hypotheses at each level of hierarchical organization of
the tensor, that is, for each set of k-indices stated previously.
Each horizontal slice of the tensor represents the knowledge
relation between the flow and the function for each product
calculated at each level of hierarchical organization of the
knowledge structure for the class. In order to convert the
matrix for each slice into a network according to Eq. (2), we
set an edge threshold value. An edge is wired between nodes
in a ‘slice’ if the value in a cell is greater than or equal to the
threshold.
Table 2
Product cluster accuracy and precision.

Cluster name Accuracy Precision

Inductive and piezoelectric vibration 100% 100%
Wind, solar and hybrid 100% 93.75%
Ocean 100% 100%
Thermal 100% 80%
To test Hypothesis 1, we calculated the topological
properties of node degree and clustering coefficient across
all k-indices. For threshold values greater than 0.6, for some
products (Innowattech piezoelectric vibration harvester and
transparent film on window solar panels) at the lowest level
of hierarchical organization, k-index (7, 3, 4), no edges could
be established between nodes. This is a numerical artifact of
the weak knowledge relation between function and flow for
some products. To enable a comparison of node degree and
clustering coefficient across all products, we set the threshold
ceiling at 0.6.We test Hypothesis 1 in twoways: by technology
and by individual product. Table 3 shows the descriptive
statistics for ND and CC calculated at the various levels of
hierarchical organization of the knowledge structure for the
products and grouped by underlying technology as categorized
by Weaver et al. [30].

There is a statistically significant difference in average
node degree and clustering coefficient between the tech-
nologies. The one-way, between-technologies analysis of
variance revealed an effect of technology on node degree,
F (6, 188) = 22.351, p b .001, M Serror = 1.896, α = .05,
and on clustering coefficient, F (6, 188) = 29.458, p b .001,
M Serror = .007, α = .05. The choice of technology has a
statistically significant difference in node degree and
clustering coefficient for product knowledge structures. A
Welch test of means confirmed that there is a statistically
significant difference in the means at the α = 0.05 level.
Post-hoc comparisons using the Tukey HSD test indicated
that the mean value of the node degree and clustering
coefficient for the hybrid technologies was statistically
higher than all of the other technologies. With respect to
hybrid products, combining technologies makes the knowl-
edge about the products more complex, as would be expected.
The technology with the lowest node degree, piezoelectric
vibration, is statistically significantly lower than all the other
technologies except ocean at the α = 0.05 level. The technol-
ogy with the lowest clustering coefficient, piezoelectric
vibration, is statistically significantly lower than all of the
other technologies at the α = 0.05 level. In summary, we find
support for Hypothesis 1. The statistically significant difference
in average node degree and clustering coefficient distinguishes
products having a higher knowledge structure complexity.

To compare the knowledge complexity of individual prod-
ucts, we calculated the node degree and clustering coefficient
for all products at the various k-indices and edge thresholds to
check the robustness of the results. Figs. 4 and 5 show the
variation of average node degree and clustering coefficient,
respectively, by edge threshold for all of the products at k-index
(7, 3, 4) due to space limitations. The purpose of these graphs is
to identify the product(s) having a knowledge structure with
the lowest node degree and clustering coefficient. This deter-
mination entails identifying the products corresponding to the
lines having the lowest, non-zero node degree or clustering
coefficient at the highest edge threshold. Identifying the product
having the lowest non-zero node degree or clustering coeffi-
cient at increasing edge thresholds sets a conservative rule, as it
requires a stronger connection between knowledge elements.
Consistent with the previous results at the technology level, the
product having the lowest node degree and clustering
coefficient is the Innowattech piezoelectric energy harvester.
The three products with consistently lower node degree



Table 3
Topological properties of products by technology (IV = inductive vibration; PV = piezoelectric vibration).

95% confidence interval for mean

N Mean Std. dev. Std. error Lower bound Upper bound Minimum Maximum

ND

6.056

7.438

CC

0.360

0.497

IV 45 5.512 1.082 0.161 5.187 5.837 3.500 7.500

PV 30 4.203 1.474 0.269 3.653 4.753 0.667

Wind 30 6.029 1.071 0.195 5.629 6.429 3.308

Ocean 15 5.450 1.552 0.401 4.590 6.309 2.300 7.625

Solar 30 6.219 1.641 0.300 5.606 6.832 1.875 8.667

Thermal 25 6.078 1.451 0.290 5.479 6.677 4.800 8.944

Hybrid 20 8.672 1.563 0.349 7.941 9.404 5.429 10.579

Total 195 5.891 1.774 0.127 5.640 6.141 0.667 10.579

IV 45 0.324 0.063 0.009 0.305 0.343 0.232 0.464

PV 30 0.256 0.096 0.017 0.220 0.291 0.000

Wind 30 0.422 0.065 0.012 0.398 0.446 0.246

Ocean 15 0.392 0.142 0.037 0.313 0.470 0.083 0.542

Solar 30 0.352 0.101 0.018 0.314 0.390 0.000 0.515

Thermal 25 0.355 0.083 0.017 0.320 0.389 0.242 0.503

Hybrid 20 0.556 0.054 0.012 0.531 0.581 0.374 0.632

Total 195 0.366 0.117 0.008 0.349 0.382 0.000 0.632
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and clustering coefficient, at edge threshold values where
comparisons can be made, are the Innowattech, transparent
film on window, and Columbia Power Manta Buoy. Tukey HSD
tests confirm that the node degree and clustering coefficient
for the Innowattech and transparent film on window are
significantly lower than all other products. For the Columbia
Power Manta Buoy, its node degree is similar only to the
Perpetuum Free Standing Harvester (FSH/C) electromagnetic-
12
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4

2

0
0.1 0.2 0.3 0.4 0.5 0

Fig. 4. Node degree of knowledge structu
energy harvester, and its clustering coefficient is statistically
similar only to the Micropelt STM-PEM (STMicroelectronics
and Micropelt) thermal electrical energy harvesting and
solid-state thin-film battery. The Innowattech product has a
statistically significant lower node degree and clustering
coefficient than all other products except for the Columbia
Power Manta Buoy and the transparent film on window solar
panel.
.6 0.7 0.8 0.9

res for energy harvesting products.
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To test Hypothesis 2 and Hypothesis 3, we calculated the
module sizes and membership number of nodes. Fig. 6
shows the cumulative distribution for community degree
and membership number for all of the products by
technology. As before, these graphs were produced by
calculating the module size and membership number for
all of the products at the edge threshold level of 0.6 for all
k-indices. In this way we find as many modules as possible
in each knowledge structure so that we produce more
observations of module size and membership number. The
graphs do not provide a differential prediction of progress
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Fig. 6. Community degree and membership number
potential because the distributions follow a similar shape.
As the results are similar when we plot community
degree and membership number by product, we do not
show these graphs. These results imply that community
degree and membership number for product knowledge
structures may in general follow similar cumulative
distributions. In summary, we do not find sufficient
differential in community degree and membership num-
ber between these products to support using Hypothesis 2
and Hypothesis 3 to gauge knowledge structure complex-
ity and progress potential.
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for energy harvesting devices by technology.
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5. Discussion

Studies estimating the rate of progress of energy gener-
ation technologies using experience curves have, of course,
contributed much to thinking about policy decisions related
to energy technology [24]. However, as some researchers are
starting to identify, the theoretical mechanism underlying
experience curves, which is learning by experience, weakly
accounts for actual progress [9,48]. What remains largely
missing is the study of the influence of knowledge underlying
a product and its core technology on the learning rate. The
knowledge structure of a product has important implications
on how companies organize themselves to create the required
knowledge. Put simply, the structure of knowledge has
affordances, which lend themselves to certain organizational
forms to enable learning-by-experience activities including
knowledge production, transfer, integration, and absorption.
Our methodology complements existing forecasting methods
to estimate progress when companies (or industries) have
scant historical data, and, thus, the use of experience curves
is not practical, or when a technology is simply not mature
enough to have any certainty in the factors appearing in
calculations such as the Levelized Cost of Energy (LCOE).

From a management of technological innovation perspec-
tive, our methodology aims to answer the following ques-
tion: the likelihood of progress under the assumption that
investing resources into a technology would yield progress.
This question could be asked in at least two circumstances.
Companies may be given a choice of alternatives in which
they can invest resources. They may wish to know into which
product (and its associated technology) should investment
be made because it is likely to progress faster and thus
become commercially viable faster. In another circumstance,
a company or a government may have already decided that it
will invest in a range of products andmust allocate a finite set
of resources across them. This model provides guidance on
differential potentials for progress, which suggests that some
products, given their underlying technologies, may require
more resources in order to make progress than another set of
products employing alternative technologies. We do not make
the recommendation that products that have less progress
potential should receive no resourcing. Some products
may have important social benefits, such as job creation or
environmental protection, which our model ignores. The main
contribution of our research is in explaining the differential
progress potential inherent in real products so that differential
investment can be made.

Our model is limited by several important assumptions.
First, the model considers endogenous characteristics only. That
is, we do not take into account any exogenous factors such as
market size, industry structure, or a company's capability to
deliver the technological improvements. Second, this model
does not take into account whether the knowledge dependency
exists within the company or outside of the company (or
industry). In related research on innovation networks, which
model relationships between companies, those companies and
innovation networks that have strong and dense connections
tend to perform better in terms of achieved innovation
outcomes [49,50]. Our research could contribute to the research
in innovation networks by revealing the necessary degree of
interdependence due to the node degree, clustering, and degree
of modularization of knowledge for the product they are
designing. From the standpoint of managerial practice in
innovation networks, our prescription for increasing or decreas-
ing the modularity of the innovation network would be based
on the degree of modularity of the knowledge, rather than the
degree of modularity of the product architecture.

Finally, our model does not consider the underlying
physics of the specific energy harvesting devices and the
currently known physical ceilings. Piezoelectric energy
harvesters are currently limited in application to small-scale
devices that have modest power requirements rather than
large-scale power generation, which is where wind, solar,
and wave technologies are currently being deployed. In other
words, they occupy different market niches for energy
harvesting. However, the piezoelectric energy harvesters
may prove to be the disruptive technology [51] since they
are currently being used to address “non-consumption” in
new consumer products for which battery technology is not
practical, and, as the Innowattech product demonstrates,
appear to have an upward pathway to utility-scale energy
generation by harvesting vibrations from large-scale infra-
structure such as roads and railways.

While this work has taken initial steps toward establish-
ing the link between knowledge complexity and forecasting
product progress potential, there is much more potential
along this line of reasoning. First, the knowledge structure
utilized in this paper is based upon a fairly limited standard
ontology applicable to the description of electromechanical
devices. We used a standard vocabulary to enable the
description of a class of products in a uniform way. Other
ontologies having a larger vocabulary may be applied without
loss of generality of the approach. Additionally, other ontol-
ogies would be more appropriate for other technologies and
domains such as microelectronics or biological systems. In
order to obtain more technological forecast insight from this
approach, it would be valuable to obtain historical data on
successive generations of products to calculate the edit
distance, that is, the amount of graph transformation between
the knowledge structures of successive generations [52] as a
way to relate the rate of progress to knowledge complexity.

Further, the three hypotheses we present can be looked
upon as initial points of departure for reasoning more deeply
about progress potential and innovation capacity using topo-
logical properties of networks. Our hypotheses are currently
monotonic; for example, the first hypothesis says that progress
potential increases as node degree and clustering coefficient
decrease, and we have empirically verified this finding for the
current sets of data. However, a deeper theoretical question for
future enquiry is, “How low can you push the node degree or
clustering coefficient so that you get the “fastest” or “most
optimal” progress potential?” The boundary conditions are a
(lowest) node degree and clustering coefficient of 0. However,
this is physically meaningless in terms of products as well as
knowledge structures. There can be no knowledge structure if
there are no edges in the network. There has to be a physically
meaningful answer to the question, “How low can we push the
node degree or clustering coefficient?” Therefore, one interest-
ing line of reasoning in future researchwould be to combine the
hypotheses presented here with research on small-world
networks. It is known, for example, that even in very sparse
networks, the small-world properties of low average path



609A. Dong, S. Sarkar / Technological Forecasting & Social Change 90 (2015) 599–610
distance in the network allow for efficient global information
transfer [53]. Hypothesis 1 can be extended and tested further
as follows: Progress potential increases as node degree and
clustering coefficient decrease. However, progress potential
decreases at the point when the knowledge structure ceases to
be a small-world network. In other words, since the addition of
each extra edge not only providesmore flexibility in knowledge
exchange but also has associated costs of structure formation
and maintenance, the revised hypothesis claims that progress
potential is optimal when there are ‘just enough’ edges in the
knowledge structure to ensure efficient knowledge exchange.
Therefore, the condition on small-world networks can provide a
lower bound on the theoretical question of how low we should
push the node degree and clustering coefficient yet still ensure
progress potential. This is an example of how the hypotheses
presented in this paper can provide the preliminary basis to
question more deeply about the topological properties of
knowledge structures of products and their influence on rates
of progress.

We hope that the present analysis helps to provide new
ways of thinking about how to forecast progress potential so
as to invest an appropriate level of resources into ensuring
that emerging technologies progress.
6. Conclusions

This paper presented a new approach to forecast the progress
potential of a product and new hypotheses on the role of product
knowledge structure complexity in progress potential. Whereas
prior studies have sought to relate progress potential to product
architecture complexity, this paper takes the approach that it is
the structure and complexity of knowledge underlying the
product that is relevant. Such a perspective is consonant with
the intuition that the progress potential for products is difficult
because there is a cost associated with advancing knowledge.
While product architectures can be changed, thus reducing the
degree of architectural complexity, knowledge structures may be
less mutable. Knowing the structure of knowledge may give an
indication as to the level of investment necessary to make
advances.

The method we have outlined follows a five-step procedure:
1) select a set of products achieving a similar primary function;
2) produce a functional model for each product; 3) combine
the functional models into a tensor, decompose the tensor
with HOSVD, and identify the modular organization of the
tensor; 4) calculate the node degree, clustering coefficient,
community size, and membership number for each product at
the various levels of hierarchical modular organization of the
tensor; and 5) assess the progress potential based on these
topological properties.

The paper provides key building blocks for characterizing
progress potential based on concepts from complex network
theory. The analysis of the knowledge structures at various
levels of modular organization applies the characteristic of
redundancy in complex networks to study the complexity of
the knowledge structures. The extensibility of the approach
to multi-dimensional representations of product knowledge
makes it possible to explore the properties of knowledge for a
product in a manner that takes into account the complemen-
tarity and dependency of knowledge.
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