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Abstract 

Technology forecasting estimates the future value of characteristics and performance of a technology. Since technologies are 
embedded in products, different measures of these products can be used in technology forecasting. Two classes of data play a 
central role in technology forecasting studies. In the first class, publications and patents are commonly excepted measures as 
indicators of scientific and technological performance. The second class is the performance data of the “technology in use”. In 
this second type of data, performance is usually characterized by multiple parameters in a complex product system since these 
product systems are the aggregates of subsystems. Technological progress obtained by these two types of datasets may show 
different patterns. Also each parameter of the overall system may show different pattern either. Authors claim that, in order to 
improve the quality of technology forecasts, both datasets should be studied. A multidimensional technology life cycle should be 
considered before taking managerial decisions. In this study an application of a refrigerator system has been performed to 
investigate the authors’ claim. Three types of datasets, patents from first type of dataset; coefficient of performance (COP) and 
electric efficiency index (EEI) from second type of dataset are used. Different life cycles and different scenarios of the same 
system are obtained using growth curves as a technology forecasting tool.  Findings are discussed and the proposed model of 
using measures in technology forecasting is explained in detail.  
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1. Introduction 

 
Forecasting a technology means estimating the future value of some parameters which characterizes the 

performance of that technology and provides a timely insight of technology change (J. P. Martino, 1993; Watts & 
Porter, 1997). Indicators can measure these technological changes for technology forecasting studies. While the 
dominant approach is using patent applications over time as an indicator, some researchers use different 
performance criteria to understand technological progress.  

 
A technology executes its base principle to fulfil a human purpose (Arthur, 2007). Since technologies are 

embodied in products, to execute this base principle, technology performance indicators of these products can be 
used as a measure of technological progress. Depending on the complexity of the technology, sometimes a single 
parameter is insufficient to measure whole technological progress. Complex product systems have more than one 
system level performance parameters related to technology. In this paper, authors demonstrate the need of different 
measures to improve the quality of technology forecasts through a case study on refrigeration technologies. A 
complex product system is modelled by using different datasets. Paper focuses on using multiple indicators to have a 
better insight for future progress. The plan of this study is as follows. Seminal works on technology forecasting and 
existing approaches on measurements are reviewed in the second section, research model is explained in the third 
section, an application of the proposed methodology and its results are discussed in the fourth section and finally 
section five presents conclusions and future works.     

2. Literature Review  

As can be seen in Fig.1 technology cycle begins with a technological discontinuity. In the introduction stage, the 
progress of technology is often slow and it is characterized by low performance. This growth stage takes place after 
the technology has proven its utility and the pace of improvement quickens during this stage. In this period of 
ferment during which rivalry and competition among variations of the original breakthrough eventually lead to the 
selection of a single dominant configuration (Abernathy & Utterback, 1978). The technology is widely adopted 
leading the change in the nature of competition. Following this period, incremental evolution takes place of the fast 
progress of technology. And the cycle of variation, selection and retention begins again with a further technological 
discontinuity (Murmann & Frenken, 2006). In this last period, the technology asymptotically approaches a natural 
performance limit and progress stops. The stage where the existing technology reaches its full potential defines the 
end of technology life. 

 

 
 
 
 
 
 
 

Fig. 1. The technology cycle (P. Anderson & Tushman, 1990) 
 

Within technology cycle, technology forecasting deals with the timeline of the prospects of the technology. 
Martino (1993) defined four elements of a technology forecast; the technology being forecasted, the time of the 
forecast, a statement of the characteristics and a statement of the probability associated with the forecast. Since then, 
a variety of quantitative and qualitative techniques have been developed. Environmental scanning, casual models, 
scenarios, delphi, extrapolation, analogy and probabilistic models are widely used in literature (Martino, 2003). In 
quantitative techniques, indicators of technological performance is used to model the current state of technology and 
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used to forecast future performance. One of the most challenging parts of technology forecasting is obtaining data, 
since publicly available historical data is scarce. Therefore patents and publications are useful sources in providing 
significant data for emerging technologies (Tugrul U. Daim, Rueda, Martin, & Gerdsri, 2006). Many researchers use 
bibliometric data for analysing technological pattern in their studies (Chen, Chen, & Lee, 2011; Tugrul U Daim, 
Ploykitikoon, Kennedy, & Choothian, 2008; Dubari , Giannoccaro, Bengtsson, & Ackermann, 2011; Gao et al., 
2013; Kucharavy & De Guio, 2011; Trappey, Wu, Taghaboni-Dutta, & Trappey, 2011). 

 
Substantial work on technological progress has been done by performance data of the “technology in use”. For 

example, seat-miles-per-year capacity for aircrafts, CPU cycle times for minicomputers and barrels per day for 
cement kilns are used as performance criteria by Tushman and Anderson (1986). But in literature it can be seen that 
complex product systems are characterized by multiple parameters. Researchers, who are able to access different 
performance parameters for complex product systems, use multiple indicators of technological characteristics. Sahal 
(1981) analysed performance improvements for tractors, using average fuel consumption efficiency, average fuel 
mechanical efficiency and per gallon of fuel used, ratio of drawbar horsepower to belt horsepower, or horsepower to 
weight ratio. T. R. Anderson, Daim, and Kim (2008) utilized channel bandwidth, number of channels, channel bit 
rate, transmission power, number of speech channels and data capacity as technical performance parameters for 
forecasting wireless technologies. Yoon et al. (2013) forecasted single-lens reflex camera technology using data 
envelopment analysis by employing resolution, max FPS, focus point, weight and MSRP data. Similarly, Hsu and 
Chang (2014) examine environmental, technological, economical and societal characteristics of hydrogen storage 
technologies and obtain data by fuzzy Delphi method.  

 
Some researchers stated different measures of technologies. Sahal (1977a) expressed multidimensional 

performance characteristics of technologies and Martino (1993) tried to obtain a single composite measure from 
these different performance measurements of aircraft technology. Lately Suominen and Seppänen (2014) discussed 
the accuracy of bibliometric data versus actual development. In summary, there exist many measurements to follow 
technological progress and each of them provides significant information for technology forecasting in order to 
increase the accuracy. This perspective encourages researches to use multiple indicators to have a better insight for 
future progress. 

3. Research Model 

As can be seen in literature section, the life of a main system is usually forecasted through the trend of a single 
parameter. However in a complex product system, it is impossible to represent all technology progress with one 
single technology life cycle (Taylor & Taylor, 2012).  This paper shows different life cycles of each performance 
parameters of the main system and authors suggest that a multidimensional analysis should be applied in order to 
decrease the uncertainty of the technology forecast. In this research, refrigeration technology will be used to 
investigate the use of multi-indicators for technology performance in forecasting. The model proposed examines the 
technology progress regarding different performance measures of the same system and compares the life cycles 
obtained by each dataset. As a first step of the study, dataset is obtained from refrigerator patent analysis. 

 
Technological change is regarded as a change in functional performance characteristics of overall system, and 

functional specifications must show the overall system performance rather than a sum of  material and physical 
component performance (Sahal, 1977b). Since a complex product system has many functions, performance 
characteristics should be multidimensional. As a second step of the study, overall performance characteristics will 
be identified.  

 
After obtaining all performance data from both datasets, a technology forecasting method will be applied to 

predict the future behavior of technological progress. S curve model fits into this purpose and is used to model 
derived data.   

  
S curve is a useful tool which symbolize technology’s life depending on the law of natural growth by using 

simple logistic equations (Kucharavy & De Guio, 2011). In the early stages of technology, performance is slow, 
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when the technology is better understood, the rate of improvement increases and finally technology approaches its 
limits (Christensen, 1992; Sahal, 1981). 

4. An Application on Domestic Refrigerator Technologies 

As a complex product system, domestic refrigerator is studied and refrigeration technology is examined at this 
paper. A domestic refrigerator executes its base principle to fulfil refrigeration process. Basic principle of 
refrigeration system is based on the second law of thermodynamics. A standard domestic refrigerator has a vapour 
compression refrigeration system as illustrated in Fig. 2. In a vapour compression cycle, a circulating refrigerant 
enters a compressor as low-pressure vapour and after compression, it exits the compressor as high pressure 
superheated vapour (Gomathi, Parameshwari, & Anandh, 2013). The superheated vapour flows through the 
condenser, where it condenses from vapour form to liquid form, giving off heat in the process (Yeh, 2014). High-
pressured refrigerant leaves the condenser at slightly above room temperature and enters expansion valve where its 
pressure decreases. Then refrigerant goes to the evaporator, which absorbs heat into the system, which causes the 
refrigerant to vaporize. When refrigerant is boiled at a lower temperature than that of the substance to be cooled, it 
absorbs heat from the substance (Whitman, Johnson, & Tomczyk, 2005). The vaporized refrigerant goes back to the 
compressor to restart the cycle (Yeh, 2014). This refrigeration process helps to identify performance parameters of 
the domestic refrigerator.  

 
Fig. 2. Vapor compression refrigeration system 

 
First, patent analysis is used in order to obtain first type of dataset. International patent applications are found in 

PatentScope database of World Intellection Property Organization (WIPO) ("Search International and National 
Patent Collections," 2014) and count data is utilized.  

 
Second type performance parameters are determined by interviewing with experts working at Research and 

Development department of a refrigerator manufacturer. Coefficient of performance (COP) and Electric Efficiency 
Index (EEI) are chosen as overall performance criteria.  

Coefficient of Performance: The energy efficiency of a refrigeration process indicated by its coefficient of 
performance (COP). It is the ratio of  the heat rejected by the condenser to the electricity consumption of the 
compressor (Westra, 1993). Simply it’s found as how much heat we can take away from the colder heat reservoir 
divided by how much energy must be wasted as the work. The greater this number, the higher the efficiency. The 
limit of COP is set by thermodynamic principles is determined as 2.9 in the conditions of this study.  

cQCOP
W

                      (1) 

where Qc stands for exchanged heat by condenser and W is work input to compressor. 
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Energy Efficiency Index: Comparing energy consumption data of products is quite complex, and need to be 
standardized for an accurate comparison. Energy efficiency index takes into account primarily energy 
consumption, the volume and the lowest temperature of different compartments. This makes all refrigerators 
comparable. For domestic refrigerators the energy efficiency index (EEI) is set at 102 for the average model on 
the market in year 1992 (Bertoldi & Atanasiu, 2007). After obtaining COP and EEI data for domestic refrigerator 
per year, growth curve model has been applied. Only for patent data, limit is determined from historical data. 
Then data are normalized and limits are set as 1. Then S-curves are derived for each dataset. 

4.1. Results 

S-curve equations obtained from historical data of each dataset are shown in Table 1 below.  
 
                    Table 1. Logistic equations of s-curves 

Dataset S-curve Equation 

Patent data 1/(1+e-46,49t-2018) 

COP data 1/(1+e-75,76t-2000) 

EEI Data 1/(1+e-40,06t-2004) 

 
The graphs belong to these s-curves of technology life cycles can be seen in Fig. 3. Green curve belongs to EEI, 

blue curve is for COP and black curve is obtained by patent data.  
 

 
Fig. 3. Technology s –curves of refrigeration technologies 

 
S-curve indicates that, the fastest growth in technology occurs in midpoint, and after that growth rate begins to 

slow down and eventually saturates. As it can be seen from Fig. 3, midpoint is found as 2000 from COP data, 2004 
from EEI data and 2018 from patent data, which imply different scenarios. Similarly refrigeration technology 
approaches its limits about 2060, 2040 and 2055 respectively found by EEI, COP and patent data. This result shows 
that, forecasts may change by the kind of data used, and especially in long-term forecasts there exists bigger 
differences.  
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5. Conclusion and Future Research 

The purpose of this paper is to demonstrate the challenges of using different datasets in technology forecasting. 
Authors obtained different technology life cycles of same technology, which are inconsistent with each other. 
Particularly, in long-term forecasts, incompatible results could affect managerial decisions negatively. In order to 
decrease the uncertainty and to acquire better forecasts, authors suggest studying all performance criteria together to 
derive a multidimensional technology forecast. In this manner a forecaster can have more scenarios, which helps 
managers to get ready to all possible situations for their company. Further research should focus on, how to combine 
all datasets to determine the most possible scenario, and also obtaining probabilities of each state of progress. In 
addition, different technology forecasting techniques can be experienced to investigate the authors’ claim. 
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