

Chapter 14

Inductive Transients

(2) C-Scsaice: Circuit Analysis: Theory and Practice ©Delmar Cengage Learning

Transients

- Voltages and currents during a transitional interval
- Referred to as transient behavior of the circuit
- Capacitive circuit
- Voltages and currents undergo transitional phase
- Capacitor charges and discharges
- Inductive circuit
- Transitional phase occurs as the magnetic field builds and collapses

Voltage Across an Inductor

- Induced voltage across an inductor is proportional to rate of change of current

$$
v_{L}=L \frac{\Delta i}{\Delta t}
$$

- If inductor current could change instantaneously
- Its rate of change would be infinite
- Would cause infinite voltage
- Infinite voltage is not possible
- Inductor current cannot change instantaneously
- It cannot jump from one value to another, but must be continuous at all times

Inductor Voltage

Immediately after closing the switch on an $R L$ circuit

- Current is zero
- Voltage across the resistor is zero
- Voltage across resistor is zero
- Voltage across inductor is source voltage
- Inductor voltage will then exponentially decay to zero

M) C-C Tsai

5

Open-Circuit Equivalent

- After switch is closed ($\boldsymbol{t}=\mathbf{0}^{+}$)
- Inductor has voltage across it and no current through it
- Inductor with zero initial current looks like an open circuit at instant of switching

Initial Condition Circuits

- Voltages and currents in circuits immediately after switching ($t=\mathbf{0}^{+}$)
- Determined from the open-circuit equivalent
- By replacing inductors with opens
- We get initial condition circuit
- Initial condition networks
- Yield voltages and currents only at switching

(a) C-C Tsai

7

Circuit Current and Circuit Voltages

- Current $\boldsymbol{\gamma}(\boldsymbol{t})$ in an $R L$ circuit is an exponentially increasing function of time
- Current begins at zero and rises to a maximum value
- Voltage across resistor $V_{\mathbf{R}}$ is an exponentially increasing function of time
- Voltage across inductor $\boldsymbol{V}_{\mathrm{L}}$ is an exponentially decreasing function of time

(2) C-C Tsai

$$
\begin{aligned}
& i(t)=\frac{E}{R}\left(1-e^{-R t / L}\right) \\
& v_{R}=E\left(1-e^{-\frac{R t}{L}}\right) \\
& v_{L}=E \cdot e^{-R t / L}
\end{aligned}
$$

Time Constant
 - $\tau=\boldsymbol{L} / \boldsymbol{R}$, units are seconds
 $$
\begin{aligned} & i=\frac{E}{R}\left(1-e^{-t / \tau}\right) \\ & v_{L}=E \cdot e^{-t / \tau} \\ & v_{R}=E\left(1-e^{-t / \tau}\right) \end{aligned}
$$

- The larger the inductance - The longer the transient
- The larger the resistance - The shorter the transient
- As R increases
- Circuit looks more and more resistive
- If R is much greater than L, the circuit looks purely resistive
(2) C-C Tsai

 9

Example: RL Transients

- Given $E=50 \mathrm{~V}, R=10 \Omega$, and $L=2 \mathrm{H}$, determine $\lambda(t)$.

$$
\tau=\boldsymbol{L} / \boldsymbol{R}=\mathbf{0} .2 \mathbf{s} \quad i(t)=\frac{E}{R}\left(1-e^{-R t / L}\right) \text { or } i=\frac{E}{R}\left(1-e^{-t / \tau}\right)
$$

Example: RL Transients

- Given $E=50 \mathrm{~V}, R=10 \Omega$, and $L=2 \mathrm{H}$, determine $\uparrow(t)$.

$$
\tau=L / R=0.2 \mathrm{~s}
$$

$$
v_{L}=E \cdot e^{-t / \tau}
$$

Interrupting Current in an Inductive Circuit

- When switch opens in an $R L$ circuit
- Energy is released in a short time
- This may create a large voltage
- Induced voltage is called an inductive kick
- Opening of inductive circuit may cause voltage spikes of thousands of volts

Interrupting a Circuit

- Switch flashovers are generally undesirable
- They can be controlled with proper engineering design
- These large voltages can be useful
- Such as in automotive ignition systems
- It is not possible to completely analyze such a circuit
- Resistance across the arc changes as the switch opens

Inductor Equivalent at Switching

- Current through an inductor
- Same after switching as before switching
- An inductance with an initial current
- Looks like a current source at instant of switching
- Its value is value of current at switching

(a) Current at switching
(2) C-C Tsai
(b) Current source equivalent

De-energizing Transients

- If an inductor has an initial current I_{0}, equation for current becomes

$$
i=I_{0} e^{-t / \tau^{\prime}}
$$

- $\tau^{\prime}=\boldsymbol{L} / \boldsymbol{R}$. R equals total resistance in discharge path
- Voltage across inductor goes to zero as circuit deenergizes

$$
V_{L}=V_{0} e^{-t / \tau^{\prime}}
$$

- Voltage across any resistor is product of current and that resistor. Voltage across each of resistors goes to zero

$$
v_{R}=R \cdot I_{0} e^{-t / \tau^{\prime}}
$$

(a) Immediately before the switch is opened
(a) $\mathrm{C}-\mathrm{C}$ Tsai

(b) Decay circuit

More Complex Circuits

- For complex circuits
- Determine Thévenin equivalent circuit using inductor as the load
- R_{Th} is used to determine time constant
- $\tau=L / R_{\text {Th }}$
- E_{Th} is used as source voltage

(2)
(a) Circuit

(b) Thévenin equivalent

Example1: More Complex Circuits

Switch is closed

Example1: More Complex Circuits

Switch is closed (Cont'd)

(a) Thévenin equivalent of Figure 14-24

(b)

Example1: More Complex Circuits

Switch is opened

$L=5 \mathrm{H}$
C-C Tsai
(a) Decay circuit

(b) As it looks immediately after the switch is opened. KVL yields $v_{L}=-280 \mathrm{~V} \quad 21$

Transient Analysis Using Computers

C-C Tsai

Problem: Determine i_{L} and v_{L}

$$
L=3 \mathrm{H}
$$

(2) C-C Tsai

