

Chapter 11

Capacitors Charging, Discharging, Simple Waveshaping Circuits

Sc-Source: Circuit Analysis: Theory and Practice ©Delmar Cengage Learning

Introduction

- When switch is closed at ①, capacitor charging
- When switch is closed at ⁽²⁾, capacitor discharging
- Transient voltages and currents result when circuit is switched


```
C-C Tsai
```


C-C Tsai

Exponential	Functions

x	e^{-x}	$1 - e^{-x}$
0	1	0
1	0.3679	0.6321
2	0.1353	0.8647
3	0.0498	0.9502
4	0.0183	0.9817
5	0.0067	0.9933

C-C Tsai

The Time Constant The functions $e^{-t/\tau}$ and $1 - e^{-t/\tau}$ $v_{c} = E(1 - e^{-t/RC})$ $t = 0RC = 0\tau$, $e^{-0} = 1$, $E(1 - e^{-0}) = 0$ $t = 1RC = 1\tau$, $e^{-1} = 0.368$, $E(1 - e^{-1}) = 0.632 \times E$ $t = 2RC = 2\tau$, $e^{-2} = 0.135$, $E(1 - e^{-2}) = 0.865 \times E$ $t = 3RC = 3\tau$, $e^{-3} = 0.050$, $E(1 - e^{-3}) = 0.950 \times E$ $t = 4RC = 4\tau$, $e^{-4} = 0.018$, $E(1 - e^{-4}) = 0.982 \times E$ $t \ge 5RC = 5\tau$, $e^{-5} = 0.007$, $E(1 - e^{-5}) = 0.993 \times E$

C-C Tsai

13

Capacitor with an Initial Voltage

- Voltage denoted as V_0
 - Capacitor has a voltage on it
- Voltage and current in a circuit will be affected by initial voltage

C-C Tsai

Example: More Complex Circuits

The capacitor takes **1.75ms** to discharge as shown the waveform. Determine E_r , R_{1r} and C.

C-C Tsai

Pulse Response of RC Circuits

- Pulse: Voltage or current that changes from one level to another and back again
- Periodic waveform: Pulse train is a repetitive stream of pulses
- Square wave: Waveform's time high equals its time low
- Frequency: Number of pulses per second
- Duty cycle: Width of pulse compared to its period

(e) PRR = 2 pulses/s

Time

C-C Tsai

- Pulses have a rise and fall time
 - Because they do not rise and fall instantaneously
- Rise and fall times are measured between the 10% and 90% points

C-C Tsai

C-C Tsai

(b) Distorted signal

Problem: Draw the V_c waveform after closing the switch for 15ms and opening the switch. 30Ω 10Ω 225 V i_c $-v_c$ 50Ω $C = 100 \mu F$

38

Problem: If Vc= 4.75V the alarm will be on, how long is required when the switch is closed to 5V. $\underbrace{Input}_{\text{from sor}} \underbrace{Audio}_{\text{horn}} \underbrace$

