

Chapter 10

Capacitors and Capacitance

Some cercuit Analysis: Theory and Practice ©Delmar Cengage Learning

<section-header><text><list-item><list-item><list-item>

Dielectric Constants		
	$\in = \in_r \in_o$	$C = \in {}_{r}C_{o}$
	Material	\in_r (Nominal Values)
	Vacuum	1
	Air	1.0006
	Ceramic	30-7500
	Mica	5.5
	Mylar	3
	Oil	4
	Paper (dry)	2.2
	Polystyrene	2.6
	Teflon	2.1

Compute the capacitance of a parallel-plate capacitor with <u>plates 10cm by 20cm</u>, <u>separation of 5mm</u>, and <u>a **mica** dielectric</u>.

Electric Fields

- Regions in which forces between charges exists
- Electric flux
 - Electric field lines are indicated by \u03c8 (Greek letter psi)
- Direction of this field is direction of force on a positive test charge
- Field lines never cross
- Density of lines indicate field strength

High voltage causes the dielectric breakdown of a capacitor

- Force on electrons becomes very great
- Electrons are torn from orbit
- For air, breakdown occurs at a voltage gradient of 3 kV/mm

Capacitors rated for maximum operating voltage (working voltage dc)

Rating is necessary due to dielectric breakdown

C-C Tsai

- Eventual discharge
- Small amount of charge "leaks" through dielectric
- Effect of leakage is modeled by a resistor

Equivalent Series Resistance (ESR)

- Property of real capacitors
- Sources of resistance
 - Resistance of leads
 - Contact connections between leads and plates
 - ac losses in the dielectric
- Can be modeled as a resistance in series with the capacitor
- ESR is so small it can be neglected for many types
- Can be a problem with electrolytic capacitors

Cannot be measured with an ohmmeter

Need specialized test instruments

🛞 C-C Tsai

Dielectric Absorption

- Residual charge from remaining polarized atoms:
 - Cause residual voltage after discharge
- Shorting resistor may need to be put back on to complete the discharge

Temperature Coefficient

- Positive temperature coefficient
 - Capacitance increases with increasing temperature
- Negative temperature coefficient
 - Capacitance decreases with increasing temperature
- Zero temperature coefficient
 - Capacitance remains constant

Standard Capacitor Values Capacitors manufactured in specific standard sizes 0.1 µF, 0.22 µF, 0.47 µF, etc. Multiples and submultiples of above values

0.1 pF, 0.22 pF, 0.47 pF, etc.

21

- Devices with enormous capacitance values
 - Values extend into the hundreds of farads and beyond
 - Also known as ultracapacitors
 - Used in power sources, GPS systems, PDAs, medical equipment, security systems
- Voltage rating typically only a few volts

 $C_{T} = 1/(1/30\mu + 1/60\mu + 1/20\mu) = 10\mu F$

<u>Capacitor</u> v-i Relationship

$$q = Cv_C$$
$$i_C = \frac{dq}{dt} = \frac{d}{dt}(Cv_C)$$
$$i_C = C\frac{dv_C}{dt}$$
(A)

 $i_C = C \frac{\Delta v_C}{\Delta t} = C \frac{\text{rise}}{\text{run}} = C \times \text{slope of the line}$

C-C Tsai

 $W = \int_{0}^{t} p dt = C \int_{0}^{t} v \frac{dv}{dt} dt = C \int_{0}^{V} v dv = \frac{1}{2} C V^{2}$

